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Abstract We derive an upper bound on the free energy of a Bose gas at density � and tem-
perature T . In combination with the lower bound derived previously by Seiringer (Commun.
Math. Phys. 279(3): 595–636, 2008), our result proves that in the low density limit, i.e., when
a3� � 1, where a denotes the scattering length of the pair-interaction potential, the leading
term of �f , the free energy difference per volume between interacting and ideal Bose gases,
is equal to 4πa(2�2 −[�−�c]2+). Here, �c(T ) denotes the critical density for Bose–Einstein
condensation (for the ideal Bose gas), and [·]+ = max{·,0} denotes the positive part.

Keywords Bose gas · Free energy · Variational principle

1 Introduction

The ground state energy and the free energy are the fundamental properties of a quantum
system and they have been intensively studied since the invention of the quantum mechan-
ics. The recent progresses in experiments on Bose-Einstein condensation, especially the
achievement of Bose-Einstein condensation in dilute gases of alkali atoms in 1995 [1], have
inspired re-examination of the theoretic foundation concerning the Bose system, e.g., [3, 4,
6, 9, 11–13, 18] and [17] on ground state energy and [15] on free energy.

In the low density limit, the leading term of the ground state energy per volume was
identified rigorously by Dyson (upper bound) [2] and Lieb-Yngvason (lower bound) [13] to
be 4πa�2, where a is the scattering length of the two-body potential and � is the density.
We note that 4πa�2 is also the first leading term of �E, the ground state energy difference
per volume between interacting and ideal Bose gases. (The ground state energy per volume
of the ideal Bose gas is zero.)

On the other hand, the first leading term of �f , the free energy difference between
interacting and ideal Bose gases, is the second leading order term of the free energy per
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volume f . More specifically, if a3� � 1, where a denotes the scattering length of the pair-
interaction potential, then

f (�,T ) = f0(�,T ) + 4πa(2�2 − [� − �c]2
+) + o(a�2) (1.1)

Here, f is the free energy per volume of the interacting Bose gas, f0 is the one of the ideal
Bose gas, �c(T ) denotes the critical density for Bose-Einstein condensation (for the ideal
gas), and [·]+ = max{·,0} denotes the positive part. The lower bound on f has been proved
in Seiringer’s work [15]. In this paper, we prove the upper bound on f and obtain the main
result (1.1).

The trial state we use in this proof is of a new type, which was first used in [17]. Let φ0

be the ground state of the ideal Bose gas. In [17], we constructed a trial state (pure state)
for interacting Bose gases which is obtained by slightly modifying a state of the following
form,

exp

[∑
k∼1

∑
v∼√

�

2
√

λk+v/2λ−k+v/2a
†
k+v/2a

†
−k+v/2ava0 +

∑
k

cka
†
k a

†
−ka0a0

]
|φ0〉 (1.2)

(with suitably chosen c and λ). Here the notation A ∼ B means that A and B have the
same order. The expression of (1.2) is simple but it is hard to use itself for our calculation in
[17]. If one tried to write (1.2) with the occupation-number representation as (for calculating
interaction energies) ∑

α

fα|α〉, (1.3)

he will see that it is very hard to calculate fα’s. Therefore in [17], we constructed a trial state∑
α f̃α|α〉 by defining f̃α directly. The f̃α’s have many properties, which have no physical

meaning but can simplify our proof. E.g. if the state |α〉 contains a particle with extremely
high momentum, then f̃α = 0. Furthermore, the trial state

∑
α f̃α|α〉 is very close to (1.2)

i.e., for some c > 0, ∑
α

|fα − f̃α|2〈α|α〉 � �c. (1.4)

This basic idea will be used again in this paper.
This trial state (pure state) in [17] is used to rigorously prove the upper bound of the

second order correction to the ground state energy, which was first computed by Lee-Yang
[8] (see also Lee-Huang-Yang [7] and the recent paper by Yang [16] for results in other
dimensions. Another derivation was later given by Lieb [10] using a self-consistent closure
assumption for the hierarchy of correlation functions.)

We can rewrite the pure state (1.2) as follows

(1.2) = P(0,0)P(0,
√

�)|φ0〉 (1.5)

where

P(0,0) = exp

[∑
k∼1

cka
†
ka

†
−ka0a0

]

P(0,
√

�) = exp

[∑
k∼1

∑
v∼√

�

2
√

λk+v/2λ−k+v/2a
†
k+v/2a

†
−k+v/2ava0

] (1.6)
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We note: P(0,0) represents the interactions between condensate and condensate, since in the
operator a

†
ka

†
−ka0a0 two particles with momenta zero are annihilated (a0a0) and two parti-

cles with high momentum are created (a
†
k a

†
−k). Similarly P(0,

√
�) represents the interaction

between condensate and the particles with momentum of order �1/2, since in this operator
one particle with momentum zero and one with momentum of order �1/2 are annihilated
(ava0) and two particles with high momenta are created.

In this paper, we construct a trial state of a similar form. More specifically, let �I be
Gibbs state of the ideal Bose gas at temperature T . The trial state we are going to use is very
close to

� ∼ (
P(�1/3,�1/3)P(0,�1/3)P(0,0)

)
�I

(
P(�1/3,�1/3)P(0,�1/3)P(0,0)

)†
(1.7)

where

P(0,0) = exp

[∑
k∼1

cka
†
ka

†
−ka0a0

]

P(0,�1/3) = exp

[∑
k∼1

∑
v∼�1/3

2
√

λk+v/2λ−k+v/2a
†
k+v/2a

†
−k+v/2ava0

]

P(�1/3,�1/3) = exp

[∑
k∼1

∑
u�=v∼�1/3

√
λk+ v+u

2
λ−k+ v+u

2
a

†
k+ v+u

2
a

†
−k+ v+u

2
avau

]
(1.8)

where the constant 2 comes from the ordering of ava0. As one can see, P(0,0) represents the
interactions between condensate and condensate, P(0,�1/3) represents the interaction between
condensate and the particles with momentum of order �1/3, and P(�1/3,�1/3) represents the
interaction between the particles with momentum of order �1/3.

2 Model and Main Results

2.1 Hamiltonian and Notations

We consider a Bose gas which is composed of N identical bosons confined to a cubic box
	 of side length L. The Hilbert space HN,	 for the system is the set of symmetric functions
in L2(	N). The Hamiltonian is given as

HN,	 = −
N∑

i=1

�i +
∑

1≤i<j≤N

V (xi − xj ) (2.1)

Here xi ∈ 	 (1 ≤ i ≤ N ) is the position of ith particle. The two body interaction is given by
a spherically symmetric non-negative function V , such that ‖V ‖∞ < ∞, as in [17] and [3].
In the proof on the lower bound of the free energy, [15], the V is assumed to have a finite
range R0, i.e., V (r) = 0 for r > R0. Therefore we will also use this assumption in this paper.
In particular, it has a finite scattering length, which we denote by a.

We note that the interaction only depends on the distance between the particles. As usu-
ally, we denote by HP

N,	 (HD
N,	) the Hamiltonians with periodic (Dirichlet) boundary con-

ditions. (Here xi − xj in (2.1) is really the distance on the torus in the periodic case.)
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In periodic case, we can also write Hamiltonian with creation and annihilation operators
as follows. The dual space of 	 is 	∗ := ( 2π

L
Z)3. For a continuous function F on R

3, we
have

1

L3

∑
p∈	∗

F(p) = 1

|	|
∑
p∈	∗

F(p)
|	|→∞−→

∫
R3

d3p

(2π)3
F(p) (2.2)

The Fourier transform is defined as

V̂p =
∫

	

e−ipxV (x)dx, V (x) = 1

|	|
∑
p∈	∗

eipxV̂p

and then

1

|	|
∑
p∈	∗

eipx = δR3(x),

∫
	

eipxdx = δ	∗(p)

where δR3(x) is the usual continuum delta function and the function δ	∗(p) = |	| = L3 if
p = 0 (otherwise it is zero) is the lattice delta-function. We will neglect the subscript; the
argument indicates whether it is the momentum or position space delta function. In general
we will also neglect the hat in the Fourier transform. To avoid confusion, we follow the
convention that the variables x, y, z, etc. denote position space, the variables p, q , k, u, v,
etc. denote momentum space. We also simplify the notation

∑
p

:=
∑
p∈	∗

i.e. momentum summation is always over 	∗. We will use the bosonic operators with the
commutator relations

[ap, a†
q ] = apa†

q − a†
qap =

{
1 if p = q

0 otherwise.

Thus our Hamiltonian in the Fock space F	 = ⊕N HN,	 is given by

HP
	 =

∑
p

p2a†
pap + 1

|	|
∑
p,q,u

V̂u

2
a†

pa†
qap−uaq+u (2.3)

2.2 Free Energy

The free energy per unit volume of the system at temperature T = β−1 > 0 and density
� = N/|	| > 0 in the cubic box 	 is defined as

f (�,	,β) ≡ − 1

|	|β ln
(
TrHN,	

Exp(−βHN,	)
)

(2.4)

Let f P (�,	,β) and f D(�,	,β) denote the free energy per unit volume of the system
with periodic or Dirichlet boundary conditions. Furthermore, we denote by f (�,β) the free
energy (per unit volume) in the thermodynamic limit, i.e., |	|, N → ∞ with � = N/|	|
fixed, i.e.,

f P(D)(�,β) ≡ lim|	|→∞ f P(D)(�,	,β) (2.5)
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As mentioned in the introduction, in this paper we give an upper bound on the leading order
correction of f (�,β), compared with an ideal gas, in the case that a3� is small and β�2/3 is
order one. We note that a3� and β�2/3 are dimensionless quantities.

2.3 Ideal Bose Gas in the Thermodynamic Limit

In this section, we review some well known results on ideal Bose gases. In the case of van-
ishing interaction potential (V = 0), the free energy per unit volume in the thermodynamic
limit can be evaluated explicitly. Let ζ denote the Riemann zeta function. It is well known
that when �2/3β ≥ (4π)−1ζ(3/2)2/3, i.e., � is greater than critical density �c ,

� ≥ �c ≡ (4πβ)−3/2ζ(3/2) (2.6)

the free energy in the thermodynamic limit is given as

f
D(P )

0 (�,β) = 1

(2π)3β

∫
R3

ln(1 − e−βp2
)d3p (2.7)

On the other hand, when � ≤ �c,

f
D(P )

0 (�,β) = �μ + 1

(2π)3β

∫
R3

ln(1 − e−β(p2−μ))d3p (2.8)

Here μ(�,β) < 0 is determined by

� = 1

(2π)3

∫
R3

1

eβ(p2−μ) − 1
d3p (2.9)

Note: when � ≥ �c , μ(�,β) is defined as zero.
It is easy to see the scaling relation:

f
D(P )

0 (�,β) = �5/3f
D(P )

0 (1, �2/3β)

and the ration �c/� only depends on dimensionless quantity �2/3β , i.e.,

�c/� = (4π)−3/2ζ(3/2)(�2/3β)−3/2 (2.10)

Let β(�) be a function of �, we define R[β] as the ratio �c/� in the limit � → 0, i.e.,

R[β] ≡ lim
�→0

�c(β)/� = lim
�→0

(4π)−3/2ζ(3/2)
(
�2/3β(�)

)−3/2
(2.11)

2.4 Scattering Length

In this paper, we use the standard definition of scattering length, as in [3, 4, 6, 13, 15, 17,
18]. Let 1 − w be the zero energy scattering solution, i.e.,

−�(1 − w) + 1

2
V (1 − w) = 0 (2.12)

with 0 ≤ w < 1 and w(x) → 0 as |x| → ∞. Then the scattering length is given by the
formula

a := 1

4π

∫
R3

1

2
V (x)(1 − w(x))dx (2.13)
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With (2.12), we have, for p �= 0,

wp =
[

1

2
V (1 − w)

]
p

|p|−2. (2.14)

Because V (1 − w) ≥ 0, so for ∀p,

∣∣[V (1 − w)]p
∣∣ ≤

∫
V (1 − w).

Then with (2.13), i.e.,
∫

1
2V (1 − w) is equal to 4πa, we obtain the following bound on wp

∣∣wp

∣∣ ≤ 4πa|p|−2 (2.15)

Furthermore, when V is C∞ function with compact support, one can easily prove that
∣∣∣∣dwp

dp

∣∣∣∣ ≤ const.
(|p|−3 + |p|−2

)
(2.16)

Here the constant only depends on a and R0.

2.5 Main Results

Theorem 1 Let V (x) ≥ 0 be a bounded, piecewise continuous function with compact sup-
port. In the temperature region where lim�→0 �2/3β(�) ∈ (0,∞) and in the thermodynamic
limit, we have the following upper bound on the free energy difference per volume between
the interacting Bose gas f D(�,β) and the ideal Bose gas f D

0 (�,β):

lim�→0
(
f D(�,β) − f D

0 (�,β)
)
�−2 ≤ 4πa(2 − [1 − R[β]]2

+), (2.17)

where R[β] is defined in (2.11) as the ratio �c/� in the limit � → 0, and a is the scattering
length of V .

It is well known that the effect of boundary conditions for free particles in the thermody-
namic limit is negligible, i.e.,

f0(�,β) ≡ f D
0 (�,β) = f P

0 (�,β) = f N
0 (�,β) = f R

0 (�,β) (2.18)

where N denotes Neumann condition and R denotes Robin boundary condition: ∂u/∂ν =
−αu (for some given constant α > 0, with ν denoting the outward normal).

On the other hand, the Propositions 2.3.5 and 2.3.7 of [14] show that

f D(�,β) = f P (�,β) = f N(�,β) = f R(�,β). (2.19)

Therefore, with the results on lower bound in Seiringer’s work [15], we can obtain the fol-
lowing result.

Corollary 1 Under the assumption of Theorem 1, in Dirichlet, periodic, Neumann and
Robin boundary condition, we have:

lim
�→0

(
f P(N,D,R)(�,β) − f0(�,β)

)
�−2 = 4πa(2 − [1 − R[β]]2

+), (2.20)
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3 Basic Strategy

3.1 Reduction to Small Torus with Periodic Boundary Conditions

To obtain the upper bound to the free energy, we can use the variational principle, which
states that, for any state �D(P ) (HN → HN ) in the domain of H

D(P)
N,	 (we will omit these su-

perscripts of H since it will be clear from the context what they are), the following inequality
holds.

f D(P )(�,	,β) ≤ 1

|	| TrHN,	
HN,	�D(P ) − 1

|	|β S(�D(P )) (3.1)

Here, S(�) = −Tr� ln� denotes the von Neumann entropy. Hence, to prove Theorem 1,
one only needs to construct a trial states �D(�,	,β) satisfying Dirichlet boundary condition
and the following inequality:

lim�→0lim|	|→∞
(

1

|	| TrHN,	�D − 1

|	|β S(�D) − f D
0 (�,β)

)
�−2

≤ 4πa(2 − [1 − R[β]]2
+) (3.2)

Furthermore, the proper trial states in the thermodynamic limit (	 → ∞) can be constructed
by duplicating the proper trial states in the small boxes (|	| = �−c, c > 2) with Dirichlet
boundary condition. (Let the distance between the adjacent small boxes be R0. Therefore
there is no interaction between different boxes.) Hence, the following Proposition 1 implies
our main result, Theorem 1.

Note: Late we will choose the volume of the small box as �−2−ε , where ε is a small pos-
itive number. As one can see that, when size of the box is too small, the Dirichlet Boundary
condition will affect (increase) the (total) free energy. When the volume of the small box is
O(�−2), we noticed that we can not prove that the effect of Dirichlet Boundary condition is
much less than the effect of the interaction. Therefore, to study the effect of the interaction,
we have to choose the volume of the small box as �−2−ε .

Proposition 1 In the temperature region where lim�→0 �2/3β(�) ∈ (0,∞), for fixed scat-
tering length a, there exist 	 with |	| ≥ �−41/20 and trial states �D(�,	,β) satisfying the
Dirichlet boundary condition and the inequality (set N = |	|�)

lim�→0

(
1

|	| TrHN,	�D − 1

|	|β S(�D) − f D
0 (�,β)

)
�−2

≤ 4πa(2 − [1 − R(β)]2
+), (3.3)

where R(β) is defined in (2.11).

Here the number 41/20 in the assumption can be replaced with any number larger than 2.
On the other hand, the next lemma shows that a Dirichlet boundary condition trial state

with correct free energy can be obtained from a periodic trial state in a slightly smaller box.

Lemma 1 Let the volume |	| be equal to �−41/20. In the temperature region of Theorem 1,
if

f P (�,	,β) ≤ const. �5/3, (3.4)
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then for the revised box 	∗ and density �∗, defined by

|	∗| ≡ |	|(1 + 2�41/120)3, �∗ ≡ �(1 + 2�41/120)−3, (3.5)

we have f D(�∗,	∗, β) bounded from above as follows

lim�→0
(
f D(�∗,	∗, β) − f P (�,	,β)

)
�−2 ≤ 0 (3.6)

Lemma 1 can be proved with standard methods as in [17] and we postpone the proof to
Sect. 12.1.

We note: |	∗| ≥ (�∗)−41/20, and satisfies the assumption in Proposition 1. The construc-
tion of a periodic trial state yielding the correct free energy upper bound is the core of this
paper. We state it as the following theorem, which gives the upper bound on f P (�,	,β) in
(3.4) and (3.6).

Theorem 2 Assume lim�→0 �2/3β ∈ (0,∞). For |	| = �−41/20 and N = |	|�, there exists
a periodic trial state �(�,	,β) satisfying

lim�→0

(
1

|	| TrHN� − 1

|	|β S(�) − f P
0 (�,β)

)
�−2 ≤ 4πa(2 − [1 − R[β]]2

+) (3.7)

It implies

lim�→0

(
f P (�,	,β) − f P

0 (�,β)
)
�−2 ≤ 4πa(2 − [1 − R[β]]2

+) (3.8)

3.2 Proof of Proposition 1

To prove Proposition 1, we can directly apply Lemma 1 and Theorem 2. Lemma 1 shows
that the upper bound of the free energy (with Dirichlet boundary conditions) is sightly larger
than the one (with Periodic boundary conditions) in a slightly smaller box. In the smaller
box the density is sightly increased. But the temperature is unchanged. Therefore the relation
between temperature and density is different from the one in the initial small box. In this
subsection, we will show that this difference will not affect our result(up to the order �2).

Proof of Proposition 1 Using the temperature function β in the assumption of Proposition 1,
we define a new temperature function β̃ as follows

β̃ : β̃(�) = β(�∗), (3.9)

where �∗ = �(1 + 2�41/120)−3, as in (3.5).
Insert the result in Theorem 2 into Lemma 1. With the definition of 	∗, �∗ in Lemma 1

(3.5), we obtain at the inverse temperature β̃(�),

lim�→0

(
f D(�∗,	∗, β̃) − f P

0 (�, β̃)
)

�−2 ≤ 4πa(2 − [1 − R[β̃]]2
+). (3.10)

Since �∗ = �(1 + o(�1/3)), we have the following equalities on the free energies of ideal
Bose gases in the thermodynamic limit:

f P
0 (�, β̃) = f D

0 (�, β̃) = f D
0 (�∗, β̃)(1 + o(�1/3)). (3.11)
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Therefore, we can replace f P
0 (�, β̃) in (3.10) with f D

0 (�∗, β̃), i.e.,

lim�→0

(
f D(�∗,	∗, β̃) − f D

0 (�∗, β̃)
)

�−2 ≤ 4πa(2 − [1 − R[β̃]]2
+). (3.12)

Then by the definition of β̃ in (3.9), we obtain R[β] = R[β̃], so

lim�→0

(
f D(�∗,	∗, β(�∗)) − f D

0 (�∗, β(�∗))
)
�−2 ≤ 4πa(2 − [1 − R[β]]2

+)

= 4πa(2 − [1 − R[β̃]]2
+)

Finally, using that 	∗ ≥ (�∗)− 41
20 and the fact that the limit � → 0 is equivalent to the limit

�∗ → 0, we arrive at the desired result (3.3). �

3.3 Outline of the Proof of Theorem 2: Reduction to Pure States

As we showed in Appendix, for any non-negative, bound, piecewise continuous, spherically
symmetric function f supported in unit ball, there exist C∞ non-negative, spherically sym-
metric function f1, f2, . . . supported in the ball of radius 2, such that for any i ≥ 1,

fi − f ≥ 0 and lim
i→∞

‖fi − f ‖1 → 0 (3.13)

Therefore, for any ε > 0, there exists a C∞ function V ε with compact support such that
V ε ≥ V and the scattering length of V ε is less than a + ε. By the definition of free energy
and the variational principle,

f (�,β,	) ≤ f ε(�,β,	) (3.14)

where f ε corresponds to the Bose gas with interaction V ε . Therefore to prove Theorem 2
and (3.7), we only need to focus on the V ’s that are C∞-functions and have compact support.
Hence in the remainder of this paper we assume that V is C∞.

In this subsection, we introduce the basic strategy of proving Theorem 2. With the as-
sumption of Theorem 2, we have

	 = [0,L]3, L = �− 41
60 , N = �− 21

20 and lim
�→0

�2/3β ∈ (0,∞). (3.15)

We first identify four regions in the momentum space 	∗ which are relevant to the con-
struction of the trial state: P0 for the condensate; PL for the low momenta, which are of the
order �1/3; PH for momenta of order one; and PI the region between P0 and PL.

Definition 1 (Definitions of P0, PI , PL and PH )
Define four subsets of momentum space 	∗ = (2πL−1

Z)3: P0, PI , PL and PH as follows.

P0 ≡ {p = 0}
PI ≡ {

p ∈ 	∗ : 0 < |p| < εL�1/3
}

PL ≡ {
p ∈ 	∗ : εL�1/3 ≤ |p| ≤ η−1

L �1/3
}

PH ≡ {
p ∈ 	∗ : εH ≤ |p| ≤ η−1

H

}
,

(3.16)

where the parameters are chosen as follows

εL, ηL, εH , ηH ≡ �η and η ≡ 1/200 (3.17)
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We remark that the momenta between PL and PH are irrelevant to our construction and
η can be any positive number less than 1/200. When V = 0, most particles have momentum
in P0 ∪ PI ∪ PL. When we turn on the interaction, pairs of these particles are annihilated
and usually pairs of particles with momenta of order one will be created.

Next, as in [17], we define some notations for the states and subsets of the Fock space.
Using the occupation number representation, we describe a state in Fock space with a func-
tion mapping from momentum space to integers.

Definition 2 (Definitions of P0, PI , PL and PH )
Let P denote P0 ∪ PL ∪ PI ∪ PH . We define M̃ as the set of all functions α : P → N ∪ 0

such that ∑
k∈P

α(k) = N (3.18)

For any α ∈ M̃ , denote by |α〉 ∈ HN,	 the unique state (in this case, an N -particle wave
function) defined by the map α

|α〉 = C
∏
k∈P

(a
†
k )

α(k)|0〉,

where the positive constant C is chosen so that |α〉 is L2-normalized.
Moreover, we define M as the following subset of M̃

M ≡ {α ∈ M̃|supp(α) ⊂ P0 ∪ PI ∪ PL and α(k) ≤ mc for ∀k ∈ PL}, (3.19)

where mc is defined as

mc ≡ �−3η = �−3/200 (3.20)

Clearly, we have

a
†
k ak|α〉 = α(k)|α〉, ∀k ∈ P (3.21)

The states corresponding to the functions in M , (3.19), have no particle with momentum
of order one, and there is a restriction on the particle number. But when V = 0, the total
probability of finding the states corresponding to M is almost equal to one.

Furthermore, as follows, we can construct a trial state �0, with α’s in M , satisfying (3.7)
with 4πa replaced with

∫
R3

1
2 V dx in the r.h.s. of (3.7). We postpone the proof of the next

lemma to the Sect. 12.2.

Lemma 2 For 	 = [0,L]3, L = �− 41
60 , N = �− 21

20 and lim�→0 �2/3β ∈ (0,∞). There exists
a state �0(�,β) having the form: (gα(�,β) ∈ R)

�0 =
∑
α∈M

gα(�,β)|α〉〈α|,
∑
α∈M

gα(�,β) = 1, (3.22)

and satisfying

lim�→0

(
1

|	| TrHN�0 − 1

|	|β S(�0) − f0(�,β)

)
�−2 ≤ 1

2
V0(2 − [1 − R[β]]2

+) (3.23)



Free Energies of Dilute Bose Gases: Upper Bound 693

Furthermore, the coefficient function gα satisfies

lim
�→0

∑
α∈M

N−2Nαgα = 2 − [1 − R(β)]2
+ (3.24)

where we defined Nα ∈ R (α ∈ M) as

Nα ≡ α(0)α(0) +
∑

u,v∈PL∪P0, u�=±v

2α(u)α(v), α ∈ M (3.25)

We remark: actually �0 is very close to �I , the canonical Gibbs state of ideal Bose
gases. The state �0(�,β) satisfies (3.23), but for all potentials V �= 0, V0 = ∫

V (x)dx3 is
strictly larger than 8πa. So we need to improve �0. To do that, we need to replace the |α〉’s
(α ∈ M) with some non-product state �α’s. The energy of |α〉 is higher than what we really
want, since in |α〉 when two particles are close to each other their behavior does not look
like (1 − w), which is the zero energy scattering solution of V . For this reason, we should
construct �α as follows

�α ∼ C
∏
i<j

(1 − w)(xi − xj )|α〉

∼ C

(
1 −

∑
i<j

w(xi − xj ) +
∑

w(xi − xj )w(xk − xl) · · ·
)

|α〉

∼ C

(
1 −

∑
k

wk

|	|
∑
u,v

a
†
u+ka

†
v−kauav +

(∑
k

wk

|	|
∑
u,v

a
†
u+ka

†
v−kauav

)2

· · ·
)

|α〉 (3.26)

We give the rigorous definition in the next section. First, we noticed that the operator∑
i<j w(xi − xj ) annihilates two particles and creates two new particles. In our temperature

regime, usually the momenta of the annihilated particles are of order �1/3 or zero, belong to
PL ∪ P0 and momenta of the two created particles are of order one, i.e., belong to PH . With
this fact, we will construct �α as the linear combination of α and the states which can be
obtained by keeping annihilating 2 particles with momenta in PL ∪ P0 and creating 2 new
particles with momentum of order one, i.e.,

�α ∼ C

(
1 −

∑
k

wk

|	|
u+k,v−k∈PH∑
u,v∈P0∪PL

a
†
u+ka

†
v−kauav

+
(∑

k

wk

|	|
u+k,v−k∈PH∑
u,v∈P0∪PL

a
†
u+ka

†
v−kauav

)2

· · ·
)

|α〉 (3.27)

For simplicity, we divide the PH and PL, which are subsets of momentum space, into
small boxes. When the size of the boxes is small enough, the probability of finding two
particles annihilated (created) in same box is extremely low. Therefore to construct �α , we
only use the states in which there is at most one particle annihilated (PL) or created (PH ) in
each small box. Now we define these boxes.

Definition 3 (Definitions of BH (u), BL(u))
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Let κL, κH > 0. Divide PL and PH (3.16) into small boxes (could be non-rectangular
box) s.t. the sides of the boxes are about �κL and �κH . We denote the box containing u by
BH (u) when u ∈ PH (BL(u) when u ∈ PL).

Then we define the states which we will use to construct �α .

Definition 4 (Definition of M̃α)
For any α ∈ M , we define M̃α as the set of the β’s in M̃ (Definition 2) such that

1. If k ∈ P0, then β(k) ≤ α(k). If k ∈ PI , then β(k) = α(k).
2. There is at most one k in each BL or BH satisfying β(k) �= α(k).
3. If β(k) �= α(k), then

β(k) = α(k) − 1, for k ∈ PL

β(k) = α(k) + 1 = 1, for k ∈ PH

(3.28)

As we explained, for each α ∈ M , we construct a normalized pure state �α , which is a
linear combination of β ∈ M̃α , i.e.,

|�α〉 =
∑

β∈M̃α

fα(β)|β〉,
∑

β∈M̃α

|fα(β)|2 = 1 (3.29)

To prove Theorem 2, i.e., to improve the �0 in Lemma 2, we choose the correct trial state
� of following form:

� =
∑
α∈M

gα|�α〉〈�α|, (3.30)

where we choose gα in (3.22) and �α in (3.29).
With proper κL and κH , �S the entropy difference between �0 in (3.22) and � in (3.30)

can be proved to be much less than |	|�2.

Lemma 3 Let 	 = �−41/20, κL ≤ 5/9 and κH ≤ 2/9. Then for any {�α,α ∈ M} having the
form (3.29) and any gα > 0 such that

∑
α∈M gα = 1, we have

lim�→0
[ − S(�) − (−S(�0))

]
(	�2)−1 = 0 (3.31)

with � defined in (3.30) and �0 = ∑
α∈M gα|α〉〈α|.

We postpone the proof of this lemma to Sect. 12.3. The assumptions κL ≤ 5/9 and κH ≤
2/9 imply

�1−4η−3κL + �−4η−3κH � N�1/3. (3.32)

In the next theorem, we show that, for each α ∈ M , there exists a pure state �α of the
form (3.29) such that, comparing with |α〉, the new pure state |�α〉 lowers the total energy
by about ( 1

2V0 − 4πa)Nα	
−1, where Nα is defined in (3.25). The construction of the pure

state yielding the correct total energy is the core of the proof of Theorem 2.

Theorem 3 Let 1/2 ≥ κL ≥ 4/9 and κH ≥ 1/9. For any α ∈ M , there exists �α having the
form (3.29) and satisfying

〈�α|HN |�α〉 − 〈α|HN |α〉 +
(

1

2
V0 − 4πa

)
Nα	

−1 ≤ ε��
2	
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where the ε� is independent of α and lim�→0 ε� = 0.

Finally, by choosing the proper size of the small boxes in PL and PH , we can prove
Theorem 2 with Theorem 3, Lemma 3 and Lemma 2.

Proof of Theorem 2 Let 1/2 ≥ κL ≥ 4/9 and 2/9 ≥ κH ≥ 1/9. We choose trial state �

(3.30) with gα in Lemma 2 (3.22) and �α’s in Theorem 3. Then combine Theorem 3,
Lemma 3 and Lemma 2. �

This paper is organized as follows: In Sect. 4, we rigorously define �α’s and the trial
state �. In Sect. 5, we outline the lemmas needed to prove Theorem 3. In Sect. 6, we estimate
the number of particles in the condensate and various momentum regimes. These estimates
are the building blocks for all other estimates later on. The kinetic energy is estimated in
Sect. 7 and the potential energy is estimated in Sects. 8–11. Finally in Sect. 12, we prove
Lemmas 1, 2, 3.

4 Definition of the Trial Pure States �α’s

In this section, we give a formal definition of the trial pure state �α’s for Theorem 3. For
simplicity, we define a special ‘state’ |0〉 = 0 ∈ HN,	. As in [17], to construct �α , we use
the following operators Au,v

p,q :

Au,v
p,q : M̃ → M̃ ∪ 0, u, v ∈ P0 ∪ PL,p,q ∈ PH and u + v = p + q (4.1)

With the notation |0〉, we have the following simple formula for Au,v
p,q ,

|Au,v
p,qβ〉 = Ca†

pa†
qauav|β〉, β ∈ M̃ (4.2)

where C is a positive normalization constant. We can see that, with the notation 0, Au,v
p,qβ

makes sense when the r.h.s. is 0. We note that here 0 is introduced just for simplifying the
expression.

The operator Au,v
p,q annihilates two particles with momenta in PL or P0 and creates two

particles with momenta in PH . We note: the total momentum is conserved.
For simplicity, the pure trial state �α will be of the form

∑
β∈Mα

fα(β)|β〉 where fα is

supported in Mα ⊂ M̃α (Definition 4) which we now define.
Note that there is no physical mean to construct �α on Mα and not M̃α , but the properties

of Mα simplify our proof. We can define the coefficient function fα on Mα with a very clear
relation between fα(Au1,u2

k1,k2
β) and fα(β), as in Lemma 5. But we can not do this on M̃α .

Definition 5 (Definition of nontrivial subset in PL)
Let A be a subset of PL, it is called non-trivial when

1. If ui ∈ A and ui �= uj (1 ≤ i �= j ≤ 2), then u1 + u2 �= 0
2. If ui ∈ A and ui �= uj (1 ≤ i �= j ≤ 3), then u1 + u2 �= u3

3. If ui ∈ A and ui �= uj (1 ≤ i �= j ≤ 4), then u1 + u2 �= u3 + u4.

Definition of Mα :
Recall M̃α in Definition 4. For α ∈ M , we define the subset Mα ⊂ M̃α as the smallest set

with the following properties.
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1. For any α and γ ∈ M̃α , let PL(γ,α) denote the following subset of PL,

PL(γ,α) ≡ {u ∈ PL : γ (u) < α(u)}. (4.3)

Then for any γ ∈ Mα , PL(γ,α) is non-trivial subset of PL.
2. α ∈ Mα

3. If β ∈ Mα and γ = A
0,0
p,−pβ ∈ M̃α , then γ ∈ Mα .

4. If β ∈ Mα , γ = Au,v
p,qβ ∈ M̃α and

(a) PL(γ,α) is non-trivial
(b) β(−p) = β(−q) = 0
then γ ∈ Mα .

Note: The set Mα is unique since the intersection of two such sets Ma1 and Mα,2 satisfies
all four conditions.

We collect a few obvious properties of the elements in Mα into the next lemma.

Lemma 4 By the definition of Mα , any β ∈ Mα has the following form:

β =
m∏

i=1

Au2i−1,u2i

k2i−1,k2i

n∏
j=1

A0,0
pj ,−pj

α (4.4)

where ui ∈ PL ∪ P0, ki ∈ PH for i = 1, . . . ,2m and pj ∈ PH for j = 1, . . . , n. And

pi �= ±pj , ki �= ±kj for i �= j and ki �= ±pj for ∀i, j (4.5)

On the other hand, if {ui, (i = 1, . . . ,2m)} ∩ PL is a non-trivial subset of PL, then any
β ∈ M̃α with form (4.4) and (4.5) belongs to Mα .

Furthermore, one can change the order of the A’s in (4.4). With the fact that the subset
of non-trivial subset of PL is still non-trivial, we can see, if β belongs to Mα and has the
form (4.4) and (4.5), then we have

∏
i∈A

Au2i−1,u2i

k2i−1,k2i

∏
j∈B

A0,0
pj ,−pj

α ∈ Mα (4.6)

Here A, B are any subsets of {1, . . . ,m} and {1, . . . , n}.

Now, to define �α = ∑
β∈Mα

fα(β)|β〉, it only remains to define fα , which is supported
on Mα . As suggested in (3.27), for u,v ∈ P0 ∪ PL, p,q ∈ PH , and u + v = p + q , we have
the following relation between fα(α) and fα(Au,v

p,qα)

fα(Au,v
p,qα) ≈ −(1 − δu,v/2)

[
w(p−u) + w(v−p)

] |	|−1
√

α(u)α(v)fα(α) (4.7)

Furthermore, if β ∈ Mα and
∑

k∈PH
β(k) is small (like < 5), the approximation (3.27)

implies that for most u,v,p, q ,

fα(Au,v
p,qβ) ≈ −(1 − δu,v/2)

[
w(p−u) + w(v−p)

] |	|−1
√

β(u)β(v)fα(β) (4.8)

when Au,v
p,qβ ∈ Mα . Here we have used the fact that when β ∈ Mα and Au,v

p,qβ ∈ Mα , β(p) =
β(q) = 0.
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We hope that for most u,v ∈ P0 ∪PL, p,q ∈ PH , the approximation (4.8) would hold for
most β ∈ Mα such that Au,v

p,qβ ∈ Mα . Here “most β have some property A” means that the
probability of finding β with this property in �α is almost one, i.e.,

∑
β has property A

|〈β|�α〉|2 =
∑

β has property A

|fα(β)|2 ≈ 1 (4.9)

If the approximation (4.8) holds for some u,v ∈ P0 ∪ PL, p,q ∈ PH , then we can easily
obtain

〈�α|auava
†
pa†

q |�α〉
≈ −(1 − δu,v/2)

[
w(p−u) + w(v−p)

] |	|−1
∑

β∈Mα

√
β(u)β(v)|f 2(β)| (4.10)

Using the definition of Mα , we may guess that for most β ∈ Mα ,

β(u) = α(u), u,∈ PL

β(0) ∼ α(0)
(4.11)

Therefore

〈�α|auava
†
pa†

q |�α〉 ≈ −(1 − δu,v/2)
[
w(p−u) + w(v−p)

] |	|−1
√

α(u)α(v) (4.12)

This approximation (4.12) is very useful for calculating 〈�α|V |�α〉.
Now we give the definition of fα as follows. In Lemma 5 we check that it has this

property (4.8).

Definition 6 (The Pure Trial State �α) Recall that the function (1 − w) is the zero energy
scattering solution of the potential V , as in (2.12). Define the pure trial state �α as

|�α〉 ≡
∑

β∈Mα

fα(β)|β〉 (4.13)

where the coefficient fα(β)’s are given by

fα(β) = Cα

√
|	|β(0)

β(0)!

⎛
⎝β(k)>0∏

k∈PH

√−wk

⎞
⎠

⎛
⎝β(k)>β(−k)∏

k∈PH

√
2

⎞
⎠

⎛
⎝ ∏

u∈PL(β,α)

√
α(u)

|	|

⎞
⎠ (4.14)

Here we follow the convention
√

x = √|x|i for x < 0. For convenience, we define f (β) = 0
for β /∈ Mα . The constant Cα is chosen so that �α is L2 normalized, i.e.,

〈�α|�α〉 = 1, i.e.,
∑

β∈Mα

|fα(β)|2 = 1

In next Lemma, with the fα chosen above, we show that (4.8) holds for most u, v, p, q ,
β such that β ∈ Mα and Au,v

p,qβ ∈ Mα .
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Lemma 5

1. If k ∈ PH and β ∈ Mα, A0,0
k,−kβ ∈ Mα , then

fα(A0,0
k,−kβ) = (−wk)

√
β(0)

|	|

√
β(0) − 1

|	| fα(β) (4.15)

2. If u1, u2 ∈ PL, u2 = ±u1 or u2 ∈ BL(u1), k1, k2 ∈ PH and β ∈ Mα , then γ = Au1,u2
k1,k2

β /∈
Mα , i.e., fα(γ ) = 0.

3. If u1, u2 ∈ PL ∪ P0 and u2 �= ±u1, k1, k2 ∈ PH , β ∈ Mα and Au1,u2
k1,k2

β ∈ Mα , then when
β(−p) = β(−q) = 0, we have

fα(Au1,u2
k1,k2

β) = 2
√−wk1

√−wk2

√
β(u1)

|	|

√
β(u2)

|	| fα(β) (4.16)

when β(−p) �= 0 or β(−q) �= 0, we have

∣∣fα(Au1,u2
k1,k2

β)
∣∣ ≤

∣∣∣∣∣
√

wk1

√
wk2

√
β(u1)

|	|

√
β(u2)

|	| fα(β)

∣∣∣∣∣ (4.17)

Again the result 2 in Lemma 5 has no physical meaning, but it can simplify our proof.
In next section, we can see that, for fixed p ∈ PH and most β ∈ Mα , β(−p) = 0. Hence

the identity (4.15) or (4.16) hold for most β ∈ Mα . Since k1, k2 are order one and u1, u2 ∈
P0 ∪ PL, we have

wk1 ≈ wk2 ≈ wk1−u1 ≈ wk1−u2 = wu2−k1 (4.18)

which implies that fα satisfies the property (4.8) in most case.

5 Proof of Theorem 3

Proof Our goal is to prove

〈�α|HN |�α〉 − 〈α|HN |α〉 +
(

1

2
V0 − 4πa

)
Nα	

−1 ≤ ε��
2	 (5.1)

First we decompose the Hamiltonian HN as in [17]. By the rule 1 of the definition of M̃α ,
if β ∈ Mα ⊂ M̃α then β(k) is equal to α(k) for any k ∈ PI . Hence if k1 ∈ PI , β,γ ∈ Mα and
〈β|a†

k1
a

†
k2

ak3ak4 |γ 〉 �= 0, then one of k3 and k4 must be equal to k1.
On the other hand, since the particles with momenta in PH are created in pairs, the total

number of the particles with momenta in PH is always even. With these two results and
momentum conservation, we can decompose the expectation value 〈�α|HN |�α〉 as follows:

〈HN 〉�α =
〈 N∑

i=1

−�i

〉
�α

+ 〈Habab〉�α + 〈HL̃L̃〉�α + 〈HL̃H 〉�α + 〈HHH 〉�α , (5.2)

where
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1. Habab is the part of interaction that annihilates two particles and creates the same two
particles, i.e.,

Habab = |2	|−1
∑

u

V0a
†
ua

†
uauau + |2	|−1

∑
u�=v

(Vu−v + V0)a
†
ua

†
vauav (5.3)

2. HL̃L̃ is the interaction between four particles with momenta in PL̃:

PL̃ ≡ P0 ∪ PL (5.4)

and

HL̃L̃ = |2	|−1
∑

ui∈P
L̃

Vu3−u1a
†
u1

a†
u2

au3au4 , (5.5)

where u1 �= u3 or u4.
3. HL̃H is the part of interaction that involves two particles with momenta in PL̃ and two

particles with momenta in PH i.e.,

HL̃H = |2	|−1
∑

u1,u2∈P
L̃
,k1,k2∈PH

Vu1−k1a
†
u1

a†
u2

ak1ak2 + H.C.

+ |2	|−1
∑

u1,u2∈P
L̃
,k1,k2∈PH

2(Vu1−u2 + Vu1−k2)a
†
u1

a
†
k1

au2ak2 , (5.6)

where u1 �= u2 and H.C. denotes the hermitian conjugate of the first term.
4. HHH is the part of interaction between 4 particles with momenta in PH ,

HHH = |2	|−1
∑

ki∈PH

Vk3−k1a
†
k1

a
†
k2

ak3ak4 , (5.7)

where k1 �= k3 or k4.

With these definitions, since there is no high momentum particle in |α〉 (α ∈ M), the total
energy of |α〉 is:

〈α|HN |α〉 = 〈α|
N∑

i=1

−�i |α〉 + 〈α|Habab|α〉 (5.8)

Recall the definition of Nα for α ∈ M in (3.25). The estimates for the energies of these com-
ponents in (5.2) are stated as the following lemmas, which will be proved in later sections
with different methods.

Lemma 6 The total kinetic energy is bounded from above by

〈
N∑

i=1

−�i

〉

�α

−
〈

N∑
i=1

−�i

〉

α

− ‖∇w‖2
2Nα|	|−1 ≤ ε1�

2	, (5.9)

where ε1 is independent of α and lim�→0 ε1 = 0.

Lemma 7 The expectation value of Habab is bounded above by,

〈Habab〉�α
− 〈Habab〉α ≤ �11/4	 (5.10)
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Lemma 8 The expectation value of HL̃L̃ is bounded above by,
〈
HL̃L̃

〉
�α

≤ �11/4	 (5.11)

Lemma 9 The expectation value of HL̃H is bounded above by,
〈
HL̃H

〉
�α

+ Nα|	|−1‖V w‖1 ≤ ε2�
2	 (5.12)

where ε2 is independent of α and lim�→0 ε2 = 0.

Lemma 10 The expectation value of HHH is bounded above by,

〈HHH 〉�α
− Nα|	|−1

∥∥∥∥1

2
V w2

∥∥∥∥
1

≤ ε3�
2	 (5.13)

where ε3 is independent of α and lim�→0 ε3 = 0.

On the other hand, by definition of w in (2.12) and (2.13), we have

‖∇w‖2
2 −

∥∥∥∥1

2
V w

∥∥∥∥
1

+
∥∥∥∥1

2
V w2

∥∥∥∥
1

= 0,
1

2
V0 −

∥∥∥∥1

2
V w

∥∥∥∥
1

= 4πa (5.14)

Together with (5.8) and (5.9)–(5.13), we arrive at the desired result (5.1). �

6 Estimates on the Numbers of Particles

As in [17], the first step to prove the Lemma 6 to Lemma 10 is to estimate the particle
number of �α in the condensate, PL,PI , and PH . This is the main task of this section and
we start with the following notations.

Definition 7 Suppose ui ∈ P = P0 ∪ PI ∪ PL ∪ PH for i = 1, . . . , s. The expectation of the
product of particle numbers with momenta u1, . . . , us :

Qα (u1, u2, . . . , us) ≡
〈

s∏
i=1

a†
ui

aui

〉

�α

=
∑

β∈Mα

s∏
i=1

β(ui)|fα(β)|2 (6.1)

Definition 8 (The definition of Mα(u) and MB
α (u))

We denote by Mα(u) the set of β ∈ Mα’s satisfying β(u) = α(u), i.e.

Mα(u) ≡ {β ∈ Mα : β(u) = α(u)} (6.2)

Furthermore, with the definition of BL(u) (when u ∈ PL) and BH(u) (when u ∈ PH ), we
define MB

α (u) ⊂ Mα(u) as the intersection of Mα(v)’s of all v ∈ BL(u) (when u ∈ PL) or
BH (u)(when u ∈ PH ), i.e.,

MB
α (u) ≡

⋂
v∈BL(H)(u)

Mα(v) (6.3)

We can see

β ∈ MB
α (u) ⇔ β(v) = α(v) for ∀v ∈ BL(H)(u) (6.4)
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The coefficient function fα is supported on Mα ⊂ M̃α . Using (3.28), if β ∈ Mα and
u ∈ PL, either β(u) = α(u), i.e., β ∈ Mα(u) or β(u) = α(u) − 1, i.e., β /∈ Mα(u). Therefore
the average number of the particles with momentum u, for u ∈ PL, can be written as follows

Qα(u) = 〈a†
uau〉�α = α(u) −

∑
β /∈Mα(u)

|fα(β)|2. (6.5)

For any k ∈ PH , we have

Qα(k) =
∑

β /∈Mα(u)

|fα(β)|2. (6.6)

The following theorem provides the main estimates on Qα(u) and Qα(k).

Lemma 11 For small enough �, Qα(u) and Qα(k) can be estimated as follows (u,u1, u2 ∈ PL

and k ∈ PH )

Qα(k) =
∑

β /∈Mα(k)

|fα(β)|2 ≤ const. �2−4η, for k ∈ PH (6.7)

0 ≤ α(u) − Qα(u) =
∑

β /∈Mα(u)

|fα(β)|2 ≤ const. �1−4η, for u ∈ PL (6.8)

Furthermore, the probabilities of the combined cases are bounded as follows: (u,u1, u2 ∈ PL

and k ∈ PH )

∑
β /∈Mα(u1)∪Mα(u2)

|fα(β)|2 ≤ const. �2−8η when u1 �= u2 (6.9)

∑
β /∈Mα(u)∪Mα(k)

|fα(β)|2 ≤ const. �3−7η|wk| (6.10)

Proof of Lemma 11 First, we prove (6.7) concerning k ∈ PH . With Lemma 4 ((4.4)–(4.6)),
when β(k) > 0, there exist some γ ∈ Mα and u,v ∈ PL ∪ P0, p ∈ PH such that

Au,v
k,pγ = β and p = u + v − k (6.11)

With the properties of fα in Lemma 5 ((4.15)–(4.17)), fα(β) is bounded as

|fα(β)|2 ≤ 4γ (u)γ (v)	−2
∣∣wkwp

∣∣ |fα(γ )|2. (6.12)

Then sum up β /∈ Mα(k), i.e., β(k) > 0, by summing up u, v and γ , we obtain:

∑
β /∈Mα(k)

|fα(β)|2 ≤ 4
∑

u,v∈PL∪P0

∑
γ∈Mα

γ (u)γ (v)	−2 |wkwu+v−k| |fα(γ )|2

≤ 4�2|wk| max
p∈PH

{|wp|} (6.13)

The upper bound of |wp| is derived in (2.15):
∣∣wp

∣∣ ≤ 4πa|p|−2, therefore

Qα(k) =
∑

β /∈Mα(k)

|fα(β)|2 ≤ const. �2−2η|wk|, k ∈ PH (6.14)
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Using (2.15) again, we obtain (6.7).
Then, we prove (6.8) concerning u ∈ PL. Similarly, with Lemma 4, for any β /∈ Mα(u),

i.e., β(u) = α(u) − 1, there exist some γ ∈ Mα and v ∈ PL ∪ P0, p,k ∈ PH such that (6.11)
holds. This implies (6.12). Using (2.15) and |k + p| = |u + v| � |k|, we have

|wpwk| ≤ const. |k|−4, when p,k ∈ PH and |p + k| � |k| (6.15)

Inserting (6.15) and the bounds γ (u) ≤ α(u) ≤ mc = �−3η into (6.12), we obtain:

|fα(β)|2 ≤ const. �−3η|k|−4γ (v)	−2|fα(γ )|2 (6.16)

Again, summing up β (by summing up γ , v, p and k), with
∑

v γ (v) ≤ N , we obtain (6.8)
as follows

∑
β /∈Mα(u)

|fα(β)|2 ≤
k∈PH∑

v∈PL∪P0

∑
γ∈Mα

const. �−3η|k|−4γ (v)	−2|fα(γ )|2 ≤ �1−4η (6.17)

Next, we prove (6.9) concerning u1, u2 ∈ PL. For any β /∈ Mα(u1) ∪ Mα(u2), i.e.,

β(u1) = α(u1) − 1, β(u2) = α(u2) − 1 (6.18)

using Lemma 4, we can see that there are only two cases:

1. there exist one γ ∈ Mα , p1,p2 ∈ PH and Au1,u2
p1,p2γ = β

2. there exist one γ /∈ Mα(u2), v ∈ PL ∪ P0, v �= u2, p1,p2 ∈ PH and Au1,v
p1,p2γ = β

As before, with the properties of fα in Lemma 5, the bounds on α(u)’s (u ∈ PL) and (6.15),
we have

∑
β /∈Mα(u1)∪Mα(u2)

|fα(β)|2 ≤ const.
∑

γ∈Mα

�−7η|	|−1|fα(γ )|2

+ const.
∑

v∈PL∪P0,γ /∈Mα(u2)

�−4ηγ (v)|	|−1|fα(γ )|2 (6.19)

Using
∑

v γ (v) ≤ N and (6.8), we obtain (6.9).
At last, we prove (6.10) concerning u ∈ PL and k ∈ Pk . For any β /∈ Mα(u) ∪ Mα(k).

Using Lemma 4, we can see that there are only two cases:

1. there exist γ ∈ Mα , v ∈ PL ∪ P0, p ∈ PH and Au,v
p,kγ = β

2. there exist γ /∈ Mα(u), v1, v2 ∈ PL ∪ P0, p ∈ PH and Av1,v2
p,k γ = β

Summing up v, p or v1, v2, p, we obtain
∑

β /∈Mα(k)∪Mα(u)

|fα(β)|2 ≤ const.
∑

v∈PL∪P0

∑
γ

γ (u)γ (v)	−2|wkwu+v−k||fα(γ )|2

+
∑

γ /∈Mα(u)

4�2|wk| max
p∈PH

{|wp|}|fα(γ )|2 (6.20)

With the result in (2.15):
∣∣wp

∣∣ ≤ 4πa|p|−2 and
∑

v γ (v) ≤ N , we have:

∑
β /∈Mα(k)∪Mα(u)

|fα(β)|2 ≤ const. γ (u)�1−2η	−1|wk| +
∑

γ /∈Mα(u)

4�2−2η|wk||fα(γ )|2 (6.21)
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At last using (6.8) and the fact γ (u) ≤ α(u) ≤ �−3η and 	 = �−41/20, we obtain the desired
result (6.10) �

Moreover Qα(k)(k ∈ PH ), has a more precise upper bound as follows.

Lemma 12 For k ∈ PH , and Qα(k) is bounded above by:

Qα(k) ≤ Nα	
−2|wk|2 + �7/3−7η (6.22)

Proof First using Lemma 4, we have that, for any β /∈ Mα(k), there are two cases:

1. there exists γ ∈ Mα , such that, A0,0
−k,kγ = β

2. there exist γ ∈ Mα , u �= ±v ∈ PL ∪ P0, p ∈ PH , s.t., Au,v
p,kγ = β .

Then with the identities and bound of fα in Lemma 5 (4.15), (4.16) and (4.17), Qα(k) is
bounded above by

Qα(k) =
∑

β /∈Mα(k)

|fα(β)|2 ≤ α(0)2	−2w2
k +

∑
u,v∈PL∪P0,u�=±v

2α(u)α(v)	−2|wkwp| (6.23)

where p = u + v − k. Since wp = w−p and |p + k| ≤ 2(�1/3−η), with (2.16), we have
∣∣|wk| − |wp|∣∣ ≤ const. �1/3−4η (6.24)

Inserting this into (6.23), we obtain

Qα(k) ≤ Nα	
−2w2

k + �7/4−4η|wk| (6.25)

Then using |wk| ≤ const. �−2η, we obtain the desired result (6.22). �

At last, with Lemmas 11, 12 and the definition of Mα , one can easily obtain the following
inequalities on fα .

Lemma 13 Recall the definition of MB
α (k) or MB

α (u) in Definition 8 (6.3), the upper bounds
on fα in (6.8) and (6.7) imply:

∑
β /∈MB

α (k)

|fα(β)|2 ≤ �2−4η	�3κH ≤ �1/6 for k ∈ PH (6.26)

and ∑
β /∈MB

α (u)

|fα(β)|2 ≤ �1−4η	�3κL ≤ �1/6 for u ∈ PL (6.27)

Recall BL and BH in Definition 3. Suppose u1, u2 ∈ PL ∪P0, k1, k2 ∈ PH , u1 +u2 = k1 +k2,
u1 + u2 �= 0 and u1 /∈ BL(u2). Then using (6.8), (6.9) and the definition of Mα , we have

∑
β∈Mα,Au1,u2

k1,k2
β /∈Mα

|f (β)|2 ≤ �1/2 (6.28)

At last, with (6.7) and the fact

0 ≤ α(0) − β(0) ≤
∑
k∈PH

β(k),
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we have Qα(0) and Qα(0,0) bounded as follows

α(0) ≥ Qα(0) ≥ α(0) − �5/6N (6.29)

and [
α(0)

]2 ≥ Qα(0,0) ≥ [
α(0)

]2 − N2�5/6 (6.30)

7 Proof of Lemma 6

In this section, with the bounds on Qα(u)(u ∈ PL) and Qα(k)(k ∈ PH ), we estimate the
kinetic energy of �α by proving Lemma 6.

Proof By the definition,

〈
N∑

i=1

−�i

〉

�α

=
∑

u∈PL∪PI ∪PH

u2Qα(u) and

〈
N∑

i=1

−�i

〉

α

=
∑

u∈PL∪PI

u2α(u) (7.1)

With the definition of Mα and M̃α , we have Qα(u) ≤ α(u), for u ∈ PI ∪ PL. Then the l.h.s.
of (5.9) bounded above by

〈
N∑

i=1

−�i

〉

�α

−
〈

N∑
i=1

−�i

〉

α

− ‖∇w‖2
2Nα|	|−1

≤
∑
k∈PH

k2Qα(k) − ‖∇w‖2
2Nα|	|−1 (7.2)

With the upper bound on Qα(k) in (6.22), we have

(7.2) ≤ Nα|	|−1

∣∣∣∣‖∇w‖2
2 −

∑
k∈PH

|	|−1k2|wk|2
∣∣∣∣ + �13/6	 (7.3)

Together with lim�→0

∣∣∣‖∇w‖2
2 − ∑

k∈PH
|	|−1k2|wk|2

∣∣∣ = 0, we complete the proof of

Lemma 6. �

8 Proof of Lemma 7

Proof First we rewrite the expectation value of Habab as

〈Habab〉�α

= |2	|−1
∑

β∈Mα

(
V0

∑
u

(
β(u)2 − β(u)

) +
∑
u�=v

(V0 + Vu−v)β(u)β(v)

)
|fα(β)|2

= |2	|−1
∑

β∈Mα

(
V0(N

2 − N) +
∑
u�=v

Vu−vβ(u)β(v)

)
|fα(β)|2 (8.1)
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On the other hand,

〈Habab〉α = |2	|−1

(
V0(N

2 − N) +
∑
u�=v

Vu−vα(u)α(v)

)
(8.2)

By the assumptions, Vv is positive when |v| � 1. For any β ∈ Mα , β(u) ≤ α(u) for u ∈
P0 ∪ PI ∪ PL, therefore we have

Vu−vβ(u)β(v) ≤ Vu−vα(u)α(v), when u,v ∈ P0 ∪ PI ∪ PL (8.3)

Using this inequality and the fact α(k) = 0 for k ∈ PH , we have

〈Habab〉�α − 〈Habab〉α
≤ |2	|−1

( ∑
u/∈PH ,v∈PH

2Vu−vQα(u, v) +
∑

u,v∈PH

Vu−vQα(u, v)

)

For any u ∈ P , |Vu| is no more than |V0|, with (6.7), we obtain:

〈Habab〉�α − 〈Habab〉α ≤ V0�
∑
v∈PH

Qα(v) ≤ �11/4	 (8.4)
�

9 Proof of Lemma 8

As in [17], to calculate 〈a†
u1

a†
u2

au3au4〉�α , we start with the following identity.

Lemma 14 For any fixed momenta u1,2,3,4 and β ∈ Mα , define T (β) to be the state

|T (β)〉 ≡ Ca†
u1

a†
u2

au3au4 |β〉, (9.1)

where C is the positive normalization constant when |T (β)〉 �= 0. Then we have

〈a†
u1

a†
u2

au3au4〉�α =
∑

β∈Mα

fα(β)fα(T (β))

√
〈β|a†

u4a
†
u3au2au1 |a†

u1a
†
u2au3au4 |β〉 (9.2)

The map T depends on u1,2,3,4 and in principle it has to carry them as subscripts. We
omit these subscripts since it will be clear from the context what they are.

Proof For any fixed u1,2,3,4, by the definition of �α , we have

〈�α|a†
u1

a†
u2

au3au4 |�α〉 =
∑

γ,β∈M

fα(β)fα(γ )〈γ |a†
u1

a†
u2

au3au4 |β〉 (9.3)

By definition of Mα , one can see

〈γ |a†
u1

a†
u2

au3au4 |β〉 �= 0 ⇒ γ = T (β) (9.4)

Since |T (β)〉 is normalized, the identity in Lemma 14 is obvious. �
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9.1 Proof of Lemma 8

Proof Using the fact |Vu| ≤ V0 for any u ∈ R
3, we can see∣∣∣〈HL̃L̃

〉
�α

∣∣∣ ≤ V0|2	|−1
∑

ui∈P
L̃
,u1 �=u3,u4

∣∣∣〈a†
u1

a†
u2

au3au4

〉
�α

∣∣∣ , (9.5)

We are going to prove:

∑
u∈PL

∣∣∣∣
〈
a

†
0a

†
0aua−u

〉
�α

∣∣∣∣ = 0 (9.6)

∑
u2,u3,u4∈PL

∣∣∣∣
〈
a

†
0a

†
u2

au3au4

〉
�α

∣∣∣∣ ≤ 	2�3−5η (9.7)

∑
ui∈PL and u1 �=u3,u4

∣∣∣〈a†
u1

a†
u2

au3au4

〉
�α

∣∣∣ ≤ 	3�5−9η (9.8)

First we note (9.6) is trivial. Because if β ∈ Mα , then PL(β,α) is non-trivial subset of
PL, which tells if β(u) < α(u) then β(−u) = α(−u).

Then we prove (9.7) concerning u2,3,4 ∈ PL. By definition of Mα ,

〈β|a†
0a

†
u2

au3au4 |γ 〉 �= 0

implies u3 �= u4 and γ /∈ Mα(u2), i.e., γ (u2) < α(u2). Furthermore, with the definition of fα

(2.4), we have

fα(β) =
√

α(u3)α(u4)

β(0)α(u2)
fα(γ ) (9.9)

Combining with Lemma 14, we obtain
∣∣〈a†

0a
†
u2

au3au4

〉
�α

∣∣ ≤ α(u3)α(u4)
∑

γ /∈Mα(u2)

|fα(γ )2| (9.10)

Using (6.8) in Lemma 11, we obtain∣∣〈a†
0a

†
u2

au3au4

〉
�α

∣∣ ≤ const. α(u3)α(u4)�
1−4η, (9.11)

which implies (9.7).
Next, we prove (9.8). Similarly, we have

∣∣〈a†
u1

a†
u2

au3au4

〉
�α

∣∣ ≤ α(u3)α(u4)
∑

γ /∈Mα(u1)∪Mα(u2)

|fα(γ )2| (9.12)

Again, using Lemma 11, we obtain∣∣〈a†
u1

a†
u2

au3au4

〉
�α

∣∣ ≤ const. α(u3)α(u4)�
2−8η, (9.13)

which implies (9.8). At last, combine (9.6)–(9.8) and we obtain∣∣〈HL̃L̃

〉
�α

∣∣ ≤ �11/4	 (9.14)

�
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10 Proof of Lemma 9

We start the proof with estimating 〈a†
u1

a†
u2

ak1ak2〉�α in the special case: u1 = ±u2 ∈ PL.
By the definition of Mα , if β ∈ Mα , u ∈ PL and β(u) < α(u), then β(u) = α(u) − 1 and
β(−u) = α(−u). Since fα is supported on Mα , we have:

〈a†
u1

a†
u2

ak1ak2〉�α = 0, for ∀k1, k2 ∈ PH , u1 = ±u2 ∈ PL (10.1)

For the other cases, we leave the bounds in the following lemma. As explained be-
fore, with the fα we chose, the approximation (4.12) should hold for most u,v ∈ PL ∪ P0,
p,q ∈ PH . In the proof of Lemma 15, one can see that the approximation (4.12) implies the
main results (10.2) and (10.3).

Lemma 15 Recall PL̃ = P0 ∪ PL. For u,u1, u2 ∈ PL̃ and k, k1, k2 ∈ PH , we have

∣∣∣∣
∑

Vu−k〈a†
ua

†
−uaka−k〉�α + α(0)2‖V w‖1

∣∣∣∣ ≤ ε4N
2 (10.2)

∣∣∣∣
∑

u1 �=±u2

Vu1−k1〈a†
u1

a†
u2

ak1ak2〉�α +
∑

u1 �=±u2

2α(u1)α(u2)‖V w‖1

∣∣∣∣ ≤ ε5N
2 (10.3)

and
∑

u1 �=u2

∣∣∣〈a†
u1

a
†
k1

au2ak2〉�α

∣∣∣ ≤ ε6N
2 (10.4)

where we omitted u,u1, u2 ∈ PL̃, k, k1, k2 ∈ PH and momentum conservation equality in
∑

.
The small numbers ε4, ε5, ε6 are independent of α and lim�→0 εi = 0 for i = 4,5,6.

Proof of Lemma 9 Combine the bounds in (10.1), (10.2), (10.3) and (10.4). �

10.1 Proof of Lemma 15

Proof First we prove (10.2) concerning u ∈ PL̃ and k ∈ PH . By (10.1), if 〈a†
ua

†
−uaka−k〉�α �=

0, then u must be zero. The property of fα in Lemma 5 (4.15) implies

〈β|a†
0a

†
−0aka−k|γ 〉 �= 0 ⇒ fα(γ )

fα(β)
= − wk

|	|
√

γ (0)2 − γ (0) (10.5)

Together with Lemma 14, we have

〈a†
0a

†
0aka−k〉�α = −wk

∑
β:β∈Mα,A0,0

k,−k
β∈Mα

(
β(0)2 − β(0)

)
	−1|fα(β)|2, (10.6)

Recall the definitions of MB
α ’s in Definition 4. One can see if β(0) > 1, then β ∈ Mα and

A0,0
k,−kβ ∈ Mα is equivalent to β ∈ MB

α (k) ∩ MB
α (−k). Therefore, we have the following

identity,

〈a†
0a

†
0aka−k〉�α = −wk

∑
β∈MB

α (k)∩MB
α (−k)

(
β(0)2 − β(0)

)
	−1|fα(β)|2, (10.7)
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Using the bound on
∑

β /∈MB
α (k) |fα(β)|2 (6.26) and the bounds on Qα(0), Qα(0,0) in (6.29)

and (6.30). We obtain that
∣∣∣∣

∑
β∈MB

α (k)∩MB
α (−k)

(
β(0)2 − β(0)

) |fα(β)|2 − α(0)2

∣∣∣∣ ≤ O(�1/6N2) (10.8)

Insert (10.8) into (10.7). Then summing up k ∈ PH , with u = 0, we obtain
∣∣∣∑Vu−k〈a†

ua
†
−uaka−k〉�α + α(0)2‖V w‖1

∣∣∣
≤ α(0)2

∣∣∣∣
∑
k∈PH

−Vkwk	
−1 + ‖V w‖1

∣∣∣∣ + O(�1/6−3ηN2) (10.9)

Combining with the fact lim�→0 |∑k∈PH
−Vkwk	

−1 + ‖V w‖1| = 0, we obtain the desired
result (10.2).

Next, we prove (10.3) concerning u1, u2 ∈ PL̃, u1 �= ±u2 and k1, k2 ∈ PH . Using the
result 2 in Lemma 5, one can see

〈a†
u1

a†
u2

ak1ak2〉�α = 0 when u2 ∈ BL(u1) (10.10)

Then from now on, we assume u2 /∈ BL(u1). The property of fα in Lemma 5 implies, when
〈β|a†

u1
a†

u2
ak1ak2 |γ 〉 �= 0 and β,γ ∈ Mα ,

f (γ ) = Cβ

√−wk1

√−wk2

√
β(u1)β(u2)f (β) (10.11)

Here Cβ depends on β and |Cβ | ≤ 2. Especially, when β ∈ Mα(−k1) ∩ Mα(−k2), Cβ = 2.
Again with Lemma 14, for fixed u1, u2 /∈ BL(u1), k1 and k2, we have

〈a†
u1

a†
u2

ak1ak2〉�α = √−wk1

√−wk2

∑
β∈Mα,Au1,u2

k1,k2
β∈Mα

Cββ(u1)β(u2)|f (β)|2, (10.12)

First, using the facts |k1 + k2| ≤ 2�1/3η−1
L and the bound on dwp/dp (2.16), we obtain

|wk1 − wk2 | ≤ �1/4, therefore
∣∣(√−wk1

√−wk2

) + wk1

∣∣ ≤ �1/4 (10.13)

Insert (10.13) into (10.12), we have

〈a†
u1

a†
u2

ak1ak2〉�α = (−wk1 + O(�1/4))
∑

β∈Mα,Au1,u2
k1,k2

β∈Mα

Cββ(u1)β(u2)|fα(β)|2. (10.14)

Now we bound ∑
β∈Mα,Au1,u2

k1,k2
β∈Mα

Cββ(u1)β(u2)|fα(β)|2.

In the case β /∈ Mα(−k1) ∩ Mα(−k2), using the result in (6.7) and |Cβ | ≤ 2, we have
∣∣∣∣

∑
β /∈Mα(k1)∩Mα(k2)

Cββ(u1)β(u2)|fα(β)|2
∣∣∣∣ ≤ �α(u1)α(u2) (10.15)
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In the case β ∈ Mα(−k1) ∩ Mα(−k2), we have Cβ = 2. Using the results in Lemma 11 and
Lemma 13 ((6.7), (6.26), (6.27), (6.28) and α(u) ≤ mc = �−3η for u ∈ PL), we obtain that if
u1, u2 ∈ PL

∣∣∣∣∣
β∈Mα(−k1)∩Mα(−k2)∑

A
u1,u2
k1,k2

β∈Mα

β(u1)β(u2)|fα(β)|2 − α(u1)α(u2)

∣∣∣∣∣ ≤ O(�1/6−6η) (10.16)

and if u1 = 0, u2 ∈ PL, we have

∣∣∣∣∣
β∈Mα(−k1)∩Mα(−k2)∑

A
u1,u2
k1,k2

β∈Mα

β(u1)β(u2)|fα(β)|2 − α(u1)α(u2)

∣∣∣∣∣ ≤ O(�1/6−3ηN) (10.17)

Inserting (10.15), (10.16) and (10.17) into (10.14), with the fact |wp| ≤ 4πa|p|−2, we obtain
that for u1, u2 ∈ PL:

∣∣〈a†
u1

a†
u2

ak1ak2〉�α + 2wk1α(u1)α(u2)
∣∣ ≤ O(�1/6−8η) (10.18)

and for u1 = 0, u2 ∈ PL,

∣∣〈a†
u1

a†
u2

ak1ak2〉�α + 2wk1α(u1)α(u2)
∣∣ ≤ O(�1/6−5ηN). (10.19)

Furthermore, the smoothness and symmetry of V implies

|Vu1−k1 − Vk1 | ≤ �1/4.

Then summing up u1, u2 : u2 /∈ BL(u1) and k1, k2, we obtain

∣∣∣∣
∑

u1 �=±u2

Vu1−k1〈a†
u1

a†
u2

ak1ak2〉�α + 2
∑

u1 �=±u2

α(u1)α(u2)‖V w‖1

∣∣∣∣

≤ 2
∑

u1 �=±u2

(
α(u1)α(u2)

∣∣∣∣
∑

|Vk1wk1 |	−1 − ‖V w‖1

∣∣∣∣
)

+ O(�1/6−17ηN2)

+
∑

{u1,u2:u2∈BL(u1)}
2α(u1)α(u2)‖V w‖1 (10.20)

One can see the first line of the r.h.s. is less than ε5N
2/2. Here ε5 is independent of α and

lim�→0 ε5 = 0. With the bound α(u) ≤ mc for u ∈ PL, we can obtain that the second line of
the right side is also o(N2). Therefore we arrive at the desired result (10.3).

At last, we prove (10.4) concerning u1,2 ∈ PL, u1 �= u2 and k1,2 ∈ PH . The definitions of
Mα and fα imply that, when 〈β|a†

u1
a

†
k1

au2ak2 |γ 〉 �= 0 and β,γ ∈ Mα ,

γ /∈ Mα(u1) ∪ Mα(k2), β /∈ Mα(u2) ∪ Mα(k1)

and

|fα(γ )| ≤ const.

∣∣∣∣
√

α(u1)

α(u2)

√
wk2

wk1

∣∣∣∣ |fα(β)| (10.21)
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This implies

∣∣fα(β)fα(γ )〈β|a†
u1

a
†
k1

au2ak2 |γ 〉∣∣ ≤ const. α(u1)

∣∣∣∣
√

wk2

wk1

∣∣∣∣ |fα(β)|2 (10.22)

Summing up β /∈ Mα(u2) ∪ Mα(k1), with the upper bound on
∑

β |fα(β)|2 (6.10), we have

∣∣〈a†
u1

a
†
k1

au2ak2〉�α

∣∣ ≤ const. α(u1)

∣∣∣∣
√

wk2

wk1

∣∣∣∣
∑

β /∈Mα(u2)∪Mα(k1)

|fα(β)|2

≤ α(u1)|√wk1wk2 |�3−8η (10.23)

At last, using |wp| ≤ 4πa|p|−2 and |k1| ∼ |k2|, we have

∑
u1 �=u2

∣∣〈a†
u1

a
†
k1

au2ak2〉�α

∣∣ ≤
∑

u1,u2,k1,k2

α(u1)�
3−10η

≤ 	3�5−13η = o(	2�5/2) (10.24)

�

11 Proof of Lemma 10

In this section, we will prove Lemma 10 involving interaction energy between particles with
momenta in PH . We will show that the only contribution to the accuracy we need comes
from four high momentum particles, to be computed in Lemma 16 (11.4). We start with
separating 〈HHH 〉�α into the main terms and the error terms.

Define Mα(k1, k2, k3, k4, u1, u2) ⊂ Mα ⊗ Mα as the set of (β, γ )’s where β and γ can be
created from the same α̃ ∈ Mα as follows,

Mα(k1, k2, k3, k4, u1, u2)

≡ {(β, γ ) ∈ Mα ⊗ Mα : ∃α̃ ∈ Mαs.t.Au1,u2
k1,k2

α̃ = β and A
u1,u2
k3,k4

α̃ = γ }, (11.1)

where k1, k2, k3, k4 ∈ PH and u1, u2 ∈ PL̃. We define Au1,u2,k1,k2,k3,k4 as

Au1,u2,k1,k2,k3,k4 ≡
∑

(β,γ )∈Mα(k1,k2,k3,k4,u1,u2)

fα(β)fα(γ )
〈
β|a†

k1
a

†
k2

ak3ak4 |γ
〉

(11.2)

We note: 〈
a

†
k1

a
†
k2

ak3ak4

〉
�α

=
∑

β,γ∈Mα

fα(β)fα(γ )
〈
β|a†

k1
a

†
k2

ak3ak4 |γ
〉

(11.3)

With (11.2), we can separate the expectation value of HHH into two parts, main term
(Lemma 16) and error term (Lemma 17).

Lemma 16 Summing up k1, k2, k3, k4 ∈ PH , ki �= kj for i �= j , u1, u2 ∈ PL̃, we have
∣∣∣∣
∑
ui ,ki

Vk1−k3	
−1Au1,u2,k1,k2,k3,k4 − Nα|	|−1‖V w2‖1

∣∣∣∣ ≤ ε3

2
�2	, (11.4)

where ε3 is independent of α and lim�→0 ε3 = 0.



Free Energies of Dilute Bose Gases: Upper Bound 711

Lemma 17 Let Mα(k1, k2, k3, k4) be the union of Mα(k1, k2, k3, k4, u1, u2), i.e.,

Mα(k1, k2, k3, k4) ≡
⋃

u1,u2∈P
L̃

Mα(k1, k2, k3, k4, u1, u2). (11.5)

Then we have
∑

ki∈PH

∑
(β,γ )/∈Mα(k1,k2,k3,k4)

V0	
−1

∣∣fα(β)fα(γ )
〈
β|a†

k1
a

†
k2

ak3ak4 |γ
〉∣∣ ≤ ε3

2
�2	 (11.6)

Here ki �= kj for i �= j and ε3 is independent of α, lim�→0 ε3 = 0.

11.1 Proof of Lemma 10

Proof Definition of Mα implies that when k ∈ PH and β ∈ Mα ,

β(k) ∈ {0,1}
Then the expectation value of a

†
k1

a
†
k2

ak3ak4 must be zero when k1 = k2 or k3 = k4. Together
with the definition of HHH , we can rewrite 〈HHH 〉�α as

〈HHH 〉�α =
ki �=kj∑
ki∈PH

∑
β,γ∈Mα

1

2
Vk1−k3	

−1fα(β)fα(γ )
〈
β|a†

k1
a

†
k2

ak3ak4 |γ
〉

(11.7)

On the other hand, if β,γ ∈ Mα and 〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 �= 0 for some k1,2,3,4 ∈ PH , then by
the fact PL(β,α) = PL(γ,α) is non-trivial subset of PL (Definition 5), there exists at most
one pair of {u1, u2} such that

(β, γ ) ∈ Mα(k1, k2, k3, k4, u1, u2) (11.8)

Therefore combining (11.4) and (11.6), with |Vk1−k3 | ≤ V0, we obtain the desired result
(5.13). �

11.2 Proof of Lemma 16

Proof We start with bounding Au1,u2,k1,k2,k3,k4 .

Lemma 18 When u1, u2 ∈ PL and u1 = ±u2 or u2 ∈ BL(u1), for any ki ∈ PH , we have

Au1,u2,k1,k2,k3,k4 = 0 (11.9)

In other cases, Au1,u2,k1,k2,k3,k4 is bounded by (recall P0 = {0})
∣∣Au1,u2,k1,k2,k3,k4 − α(u1)α(u2)Fa(u1, u2)

2wk1wk3	
−2

∣∣

≤ �1/8	−2 ×
⎧⎨
⎩

α(u1)α(u2), u1, u2 ∈ PL

Nα(u2), u1 ∈ P0, u2 ∈ PL

N2, u1 = u2 ∈ P0,

(11.10)

where Fa(u1, u2) = 1 when u1 = u2 = 0, otherwise Fa(u1, u2) = 2.
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Proof of Lemma 18 First we prove (11.9). One can see that it follows the definition of
Au1,u2,k1,k2,k3,k4 and the result 2 in Lemma 5.

Then we prove (11.10) when u1, u2 ∈ PL. When (11.8) holds, by the definition of Mα

(k1, k2, k3, k4, u1, u2) in (11.1), there exists α̃ ∈ Mα such that

Au1,u2
k1,k2

α̃ = β, Au1,u2
k3,k4

α̃ = γ. (11.11)

With definition of fα , when α̃ ∈ ⋂4
i=1 Mα(−ki), we have

fα(β) = −Fa(u1, u2)
√

α(u1)α(u2)	
−1

√−wk1

√−wk2fα(α̃)

fα(γ ) = −Fa(u1, u2)
√

α(u1)α(u2)	
−1

√−wk1

√−wk2fα(α̃).
(11.12)

And when α̃ /∈ ⋂4
i=1 Mα(−ki), we have the following bound on |fα(β)fα(γ )|,

|fα(β)fα(γ )| ≤ 4α(u1)α(u2)	
−2

4∏
i=1

|√wki
||fα(α̃)|2 (11.13)

On the other hand, if ki ∈ PH for 1 ≤ i ≤ 4 and

β,γ ∈ Mα and 〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 �= 0, (11.14)

then by the definition of Mα , we have β(k1) = β(k2) = 1 and γ (k3) = γ (k4) = 1. This
implies

〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 = 1 (11.15)

Combining (11.12), (11.13) and (11.15), we obtain that when (11.11) holds and α̃ ∈⋂4
i=1 Mα(−ki),

fα(β)fα(γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 = Fa(u1, u2)
2α̃(u1)α̃(u2)	

−2
4∏

i=1

√−wki
|fα(α̃)|2 (11.16)

When α̃ /∈ ⋂4
i=1 Mα(−ki), using (6.7), we have

∑
α̃ /∈∩4

i=1Mα(−ki )

∣∣fα(β)fα(γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉∣∣ ≤ const. �3/2α(u1)α(u2)	
−2 (11.17)

Combining (11.16) and (11.17), we can see

Au1,u2,k1,k2,k3,k4 + O(�3/2)α(u1)α(u2)	
−2

= Fa(u1, u2)
2	−2

4∏
i=1

√−wki

∑
α̃∈A

α̃(u1)α̃(u2)|f (α̃)|2 (11.18)

Where A is defined as the set

A ≡ {α̃ ∈ Mα : Au1,u2
k1,k2

α̃ = β ∈ Mα, Au1,u2
k3,k4

α̃ = γ ∈ Mα, α̃ ∈
4⋂

i=1

Mα(−ki)}
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Since u1, u2 ∈ PL, when α̃ ∈ A,

α̃(ui) = α(ui) (i = 1,2). (11.19)

Furthermore, using the results in Lemma 13, we have that
∑

α̃∈A |f (α̃)|2 bounded by

1 ≤
∑
α̃∈A

|f (α̃)|2 ≤ 1 − O(�1/6) (11.20)

On the other hand, using (10.13), with the fact |k1 + k2| = |k3 + k4| ≤ �1/3�−η , one can
bound the

∏4
i=1

√−wki
in (11.18) as follows

∣∣∣∣∣
4∏

i=1

√−wki
− wk1wk3

∣∣∣∣∣ ≤ O(�1/4−η) (11.21)

Inserting (11.19), (11.21) and (11.20) into (11.18), we arrive at the desired result (11.10).
Similarly, using the bounds on Qα(0) and Qα(0,0) in (6.29) and (6.30), one can prove

(11.10) when one of ui belongs to P0 or both of them belong to P0. �

With (11.10), summing up k1, k3, u1, u2, one can easily obtain the desired result (11.4). �

11.3 Proof of Lemma 17

Proof As in [17], to estimate the error term of the interaction of particles with high mo-
menta, we need to use a new tool. We start with defining the set Mα(α̃, s, {v1, . . . , vt }). Let
v1, . . . , vt ∈ PL and being in different small boxes BL, i.e.,

BL(vi) �= BL(vj ), for i �= j. (11.22)

For non-negative integers s, t satisfying s + t ∈ 2N and α̃ ∈ Mα , define

M(α̃, s, {v1, . . . , vt }) ≡
⋃
m

{
β ∈ Mα : β =

(s+t)/2∏
i=m+1

Au2i−1,u2i
p2i−1,p2i

m∏
i=1

Au2i−1,u2i
p2i−1,p2i

α̃

}
(11.23)

where the ui ’s ∈ PL̃ and pi ’s ∈ PH such that

1. ui = 0 for i ≤ 2m.
2. {ui , 2m + 1 ≤ i ≤ s + t} is a permutation of s − 2m zeros and {v1, . . . , vt }.
3. for any fixed 2m + 1 ≤ j ≤ s + t , α̃ ∈ Mα(−pj ), i.e., α̃(−pj ) = α(−pj ).
4. pj �= −pi for any 2m + 1 ≤ j ≤ s + t and 1 ≤ i ≤ s + t .

We note: for any ui ’s and pi ’s satisfying these four conditions, one can easily check that

∏
i∈A

Au2i−1,u2i
p2i−1,p2i

α̃ ∈ Mα. (11.24)

holds for any A ⊂ {1, . . . , (s + t)/2}.
By this definition, if (11.14) holds, then β(u) = γ (u) for any u ∈ PL̃, then there at least

exists one Mα(α̃, s, {vi,1 ≤ i ≤ t}) such that

β and γ ∈ Mα(α̃, s, {v1, · · · , vt }) (11.25)
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E.g. using Lemma 4, we can see (11.25) holds when we choose α̃ = α, {v1, . . . , vt } =
PL(β,α) = PL(γ,α).

Furthermore, with Mα(α̃, s, {v1, · · · , vt }), we define N(α̃, s, {v1, . . . , vt }) as the set of the
pairs (β, γ ) such that

1. β,γ ∈ Mα(α̃, s, {v1, . . . , vt })
2. there exist ki,1 ≤ i ≤ 4 satisfying (11.14) but

(β, γ ) /∈ Mα(k1, k2, k3, k4). (11.26)

Here Mα(k1, k2, k3, k4) is defined in (11.5)
3. for any other α̃′, s ′, {v′

1, . . . , v
′
t ′ }, if β,γ ∈ Mα(α̃

′, s ′, {v′
1, . . . , v

′
t ′ }), then

s + t ≤ s ′ + t ′ (11.27)

We assume (11.25) and (11.14) holds. Clearly, s + t = 2 or t = 0 implies that (β, γ ) ∈
Mα(k1, k2, k3, k4). Hence if N(α̃, s, {v1, . . . , vt }) is not an empty set then

s + t ≥ 4, and t ≥ 1 (11.28)

By definition of N(α̃, s, {v1, . . . , vt }) and (11.15), we can bound the left side of (11.6) as
follows (ki �= kj for i �= j )

∑
ki∈PH

∑
β,γ /∈Mα(k1,k2,k3,k4)

V0	
−1

∣∣fα(β)fα(γ )
〈
β|a†

k1
a

†
k2

ak3ak4 |γ
〉∣∣

≤
∑

α̃,s,{v1...vt }
V0	

−1 |N(α̃, s, {v1, . . . , vt })| max
β,γ∈Mα(α̃,s,{v1,...,vt })

∣∣fα(β)fα(γ )
∣∣, (11.29)

where |N(α̃, s, {v1, . . . , vt })| is the number of the elements in this set. When (11.25) holds,
the definition of fα implies,

|fα(β)fα(γ )| ≤ const.t+s

∣∣∣∣α(0)

|	|
∣∣∣∣
s ∣∣∣∣�

−3η

|	|
∣∣∣∣
t

max
k∈PH

{|wk|}s+t |fα(α̃)|2

Here we used mc ≤ �−3η. Again with the facts |wp| ≤ 4πa|p|−2 and α(0) ≤ N , we obtain

|fα(β)fα(γ )| ≤ const.t+s(�1−2η)s(�−5η)t |	|−t |fα(α̃)|2 (11.30)

Therefore, the r.h.s. of (11.29) is bounded by

(11.29) ≤
∑

α̃,s,{v1...vt }
|N(α̃, s, {v1, . . . , vt })|�s(�−6η)t+s |	|−t−1|f (α̃)|2 (11.31)

Define N(α̃, s, t) and N(s, t) by

N(α̃, s, t) ≡ max
{v1,...,vt }

{|N(α̃, s, {v1, . . . , vt })|} (11.32)

N(s, t) ≡ max
α̃

{N(α̃, s, t)} (11.33)



Free Energies of Dilute Bose Gases: Upper Bound 715

With the notations N(α̃, s, t) and N(s, t), we can bound (11.31) by

(11.29) ≤ (11.31) ≤
∑
α̃,s,t

|f (α̃)|2
∑

{v1...vt }
N(α̃, s, t)�s(�−6η)t+s |	|−t−1

≤
∑
s,t

∑
{v1...vt }

N(s, t)�s(�−6η)t+s |	|−t−1 (11.34)

For fixed t , the total number of sets {v1 · · ·vt , vi ∈ PL} is bounded by

∑
{v1···vt }

1 ≤ (	�η−3
L )t (t !)−1 ≤ (�1−3η)t |	|t (t !)−1

On the other hand, t is bounded above by the total number of BL’s (the sides of BL’s are
about �3κL ) in PL, i.e.,

t ≤ |PL|/max
i

{|Bi
L|} ≤ const. �1−3η−3κL (11.35)

where |PL| and |Bi
L| are the volumes of PL and the small box Bi

L’s. Together with (11.28),
we bound the r.h.s. of (11.29) as follows,

(11.29) ≤
�1−4η−3κL∑

t=1

∑
s:s+t≥4

N(s, t)(�1−9η)s+t |	|−1(t !)−1 (11.36)

We claim that N(s, t) is bounded with the following lemma, which will be proved in next
subsection.

Lemma 19 For any N(α, s, {v1, . . . , vt }), s + t ≥ 4 and t ≥ 1, we have

|N(α, s, {v1, . . . , vt })| ≤ t !t ( 3t
4 )|	| s+t

4 +1(�−η)t+s (11.37)

Combining this Lemma with (11.36), we obtain

r.h.s. of (11.29) ≤
�1−4η−3κL∑

t=1

∑
s:s+t≥4

(�1−10η)s+t t (
3t
4 )|	| s+t

4

=
�1−4η−3κL∑

t=1

∑
s:s+t≥4

(�1−10η	1/4)s(�1−10ηt3/4	1/4)t (11.38)

With the 	 we chose, �1−10η	1/4 is much less than one. Using the assumption κL ≤ 1/2,
we have �1−10ηt3/4	1/4 � 1. Therefore, we arrive at the desired result:

(11.29) ≤ O(1) � �2	 (11.39)

�
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11.4 Proof of Lemma 19

We now prove Lemma 19.

Proof Since (β, γ ) ∈ N(α̃, s, {v1, . . . , vt }), we can express them as in the r.h.s. of (11.23),

β =
(s+t)/2∏

i=1

Au2i−1,u2i
q2i−1,q2i

α̃, γ =
(s+t)/2∏

i=1

Aũ2i−1,ũ2i

q̃2i−1,q̃2i
α̃ (11.40)

Here u, ũ’s belong to PL̃ and q , q̃’s belong to PH . We note that for any 1 ≤ i ≤ (s + t)/2,
we have

{q2i−1, q2i} �= {k1, k2} and {q̃2i−1, q̃2i} �= {k3, k4}, (11.41)

otherwise (β, γ ) ∈ Mα(k1, k2, k3, k4), which contradicts with the assumption that (β, γ ) ∈
N(α̃, s, {v1, . . . , vt }).

From (11.14), one can see that the sets {q1, . . . , q2s+2t } is very close to {q̃1, . . . , q̃2s+2t },
i.e.,

{q1, . . . , q2s+2t } − {k1, k2} = {q̃1, . . . , q̃2s+2t } − {k3, k4} (11.42)

Denote the common elements in sets {qi} and {q̃i} by p1, p2, . . ., ps+t−2. Then we have

{qi} = {k1, k2,p1,p2, . . . , ps+t−2} (11.43)

{q̃i} = {k3, k4,p1,p2, . . . , ps+t−2} (11.44)

We now construct a graph with vertices {k1, k2, k3, k4,pi,1 ≤ i ≤ s+ t −2}. The edges of the
graphs are β edges (q2i−1, q2i ),1 ≤ i ≤ (s+ t)/2 and γ edges (q̃2j−1, q̃2j ),1 ≤ i ≤ (s+ t)/2.
From (11.14), we know each ki (1 ≤ i ≤ 4) touches one edge and each pi (1 ≤ i ≤ s + t −2)
touches two edges. Hence the graph can be decomposed into two chains and loops. Thus
there exist l, mi ∈ Z and 0 < m1 < m2 < · · · < ml = s + t such that

chains

{
k1 ←→ p1 ←→ p2 ←→ p3 · · ·p2m1−1 ←→ k4 (or k2)

k3 ←→ p2m1 ←→ p2m1+1 · · ·p2m2−2 ←→ k2 (or k4)

loops

⎧⎪⎨
⎪⎩

p2m2−1 ←→ p2m2←→p2m2+1 · · ·p2(m3)−2 ←→ p2m2−1
...

p2ml−1−1 ←→ p2ml−1 ←→ p2ml−1+1 · · ·p2(ml )−2 ←→ p2ml−1−1

(11.45)

Here we have relabeled the indices of p and do not distinguish β edges and γ edges. We
also disregard the obvious symmetry k1 → k2 and k3 → k4. Due to the condition (11.27) and
the facts PL(β,α) = PL(γ,α) is non-trivial (Definition 5), the length of the loop must be 4
or more, i.e., each loop has at least 4 edges and 4 vertices, i.e,

mi−1 + 2 ≤ mi for 3 ≤ i ≤ l (11.46)

The inequality (11.41) implies m2 ≥ 2. Together with ml = (s + t)/2 and (11.46), we obtain

l ≤ (s + t)/4 + 1, t ≥ 1. (11.47)
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Without loss of generality, we assume mi −mi−1 is creasing with i ≥ 3, i.e., for 3 ≤ i < j ≤ l

mi − mi−1 ≤ mj − mj−1 (11.48)

Denote by N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml}) the set of all pairs (β, γ ) having the graph
above and we now estimate the number of elements of this set.

Using the notions Wi = (w2i−1,w2i ) and W̃i = (w̃2i−1, w̃2i ), we can add the information
between ki ’s and pi ’s into the graph as follows

k1
W1←→ p1

W̃1←→ p2
W2←→ p3 · · ·p2m1−1

W̃m1←→ k4(or k2)

k3

W̃m1+1←→ p2m1

Wm1+1←→ p2m1+1 · · ·p2m2−2

Wm2←→ k2(or k4)

p2m2−1

Wm2+1←→ p2m2

W̃m2+1←→p2m2+1 · · ·p2(m3)−2

W̃m3←→ p2m2−1

...

p2ml−1−1

Wml−1+1←→ p2ml−1

W̃ml−1+1←→ p2ml−1+1 · · ·p2(ml )−2

W̃ml←→ p2ml−1−1,

(11.49)

where wi ’s are the union of s zero’s and {v1, . . . , vt }, so are w̃’s. More specifically, if A
W←→

B appears in the graph and W = (C,D), then the operator AC,D
A,B appears in (11.40). Since

the momentum is conserved, we have

A
Wi←→ B ⇔ A + B = w2i−1 + w2i

so as W̃ ’s. With this relation, we can see that β and γ is uniquely determined by the structure
of the graph, wi ’s, w̃i ’s and one ki or pi for each loop or chain.

To bound |N(α̃, s, {v1, . . . , vt }, l, {m1, . . . ,ml})|, we note that the sum of momentum
(pi ’s) in each loop is zero. Thus we can count the number of graphs as follows.

1. choose the positions of zeros in β edges. The total number of choices is less than 2t+s .
2. choose the positions of v1 · · ·vt in β edges. The total number of choices is t !.
3. choose the positions of zeros in γ edges. The total number of choices is less than 2t+s

again.
4. choose the positions of v1 · · ·vt in γ edges. We call a loop trivial if all the momenta

associated with γ edges are zero. The number of trivial loops is at most s/4 since there
are at least two γ edges(4 zero’s) per loop. Hence the number of non-trivial loops is at
least l − s/4. Thus we only have to fix v in at most t − (l − s/4) edges and the number
of choices is at most t t−l+s/4.

Thus, with the bound on � in (11.47), we obtain

|N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml})|
≤ (const.)t+s t !t (t−l+s/4)

(
�−3η	

)l

≤ (const.)t+s t !t (3t/4)
(
�−3η	

)t/4+s/4+1
(11.50)

At last, with

|N(α, s, {v1, . . . , vt })| =
∑

l

∑
{m1,...,ml }

|N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml})|
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and ∑
l

∑
{m1,...,ml }

1 ≤ const.s+t , (11.51)

we complete the proof of (11.37). �

12 Proofs of Lemmas 1, 2, 3

12.1 Proof of Lemma 1

The proof of Lemma 1 is standard and only a sketch will be given. We first construct an isom-
etry between functions with periodic boundary condition in 	 = [0,L]3 and functions with
Dirichlet boundary condition in 	∗ = [−�,L + �]3, where L = �−41/60 and � = �−41/120.
We note, by the definition of �∗ in (3.5),

|	|� = |	∗|�∗ (12.1)

Denote the coordinates of x by x = (x(1), x(2), x(3)). Let h(x) supported on [−�,L + �]3

be the function h(x) = q(x(1))q(x(2))q(x(3)) where

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

cos[(x − �)π/4�], |x| ≤ �

1, � < x < L − �

cos[(x − (L − �))π/4�], |x − L| ≤ �

0, otherwise

(12.2)

The function q(x) is symmetric w.r.t. x = L/2. Due to the property of cosine, for any func-
tion φ with the period L we have

∫
x∈[−�,L+�]3

|hφ(x)|2dx =
∫

x∈[0,L]3
|φ(x)|2dx (12.3)

Thus the map φ −→ hφ is an isometry:

L2
Periodic

([0,L]3
) → L2

Dirichlet

([−�,L + �]3
)
.

Let χ(x) be the characteristic function of the �-boundary of [−�,L + �]3, i.e., χ(x) = 1 if
|x(α)| ≤ � for some α = 1,2 or 3 where |x(α)| is the distance on the torus [−�,L+ �]3. Then
standard methods yield the following estimate on the kinetic energy of hφ

∫
x∈[−�,L+�]3

|∇(hφ)(x)|2

≤
∫

x∈[0,L]3
|∇φ(x)|2 + const. �−2

∫
χ(x)|φ(x)|2 (12.4)

The generalization of this isometry to higher dimensions is straightforward. Suppose
�(x1, . . . ,xN) is a function with period L. Here

N = |	|� = |	∗|�∗ (12.5)
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Then for any u ∈ R
3, the map

F u(�) := �(x1, . . . ,xN)

N∏
i=1

h(xi + u) (12.6)

is an isometry from L2
Periodic([0,L]3N) to L2

Dirichlet([−� − u,L + � − u]3N). Clearly, F u has
the property (12.4).

The potential V can be extended to be periodic by defining V P (x − y) = V ([x − y]P )

where [x − y]P is the difference of x and y as elements on the torus [0,L]. Since V is
nonnegative and has fast decay in the position space, we have V (x − y) ≤ V P (x − y). From
the definition of F u, we conclude that

∫
[−�−u,L+�−u]3N

|F u(�)|2V (x1 − x2)

N∏
i=1

dxi ≤
∫

[0,L]3N

|�|2V P (x1 − x2)

N∏
i=1

dxi

Therefore, the total energies of F u(�) and � are related by

〈HN 〉F u(�) ≤ 〈HN 〉� + const. �−2
N∑

i=1

〈χ(xi + u)〉� (12.7)

We note F u is operator on pure states. It can be generalized to operator Gu on states as
follows. For any state �P of N particles in [0,L]3 with periodic boundary condition, we
define

Gu(�P ) := F u�P (F u)† (12.8)

So �D = Gu(�P ) is a state of N particles in [−� − u,L + � − u]3 with Dirichlet boundary
condition. With (12.1), one can see

Gu : �P (�,	,β) → �D
(
�∗,	∗, β

)
(12.9)

Using (12.7), we have:

TrHN Gu(�P ) ≤ TrHN�P + const. �−2
N∑

i=1

Trχ(xi + u)�P (12.10)

Averaging over u ∈ [0,L]3, we have

L−3
∫ (

TrHN Gu(�P )
)
du ≤ TrHN�P + const. �−1L−1N (12.11)

So for any �P there exists at least one u such that

TrHN Gu(�P ) ≤ TrHN�P + const.N

(
1

�L

)
(12.12)

On the other hand, the fact F u((12.6)) is a isometry implies that Gu(�P ) and �P have the
same von-Neumann entropy, i.e.,

S(Gu(�P )) = S(�P ) (12.13)
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Combine (12.12) and (12.13), we obtain �f the free energy difference between Gu(�P )

and �P is less than const.N(�L)−1. With the choice L = �−41/60 and � = �−41/120, the error
term is negligible to the accuracy we need in proving Lemma 1. This concludes the proof of
Lemma 1.

12.2 Proof of Lemma 2

It is not easy to define (construct) �0 (the state of N particles) directly. We start with con-
structing a state �F in Fock space. Then pick up the useful component of �F and revise it
to �0.

First, let BF be the standard basis of the Fock space F (	) as follows

BF ≡
{
|α〉 : |α〉 = Cα

∏
k∈( 2πZ

L
)3

(a
†
k )

α(k)|0〉, α(k) ∈ N ∪ {0}
}
, (12.14)

where Cα is a positive normalization constant. We define a revised ‘Bose’ statistics, i.e.,

1. The number of the particles in single particle state |k〉 is nonzero only when k ∈ PI ∪PL.
2. The number of the particles in single particle state |k〉, k ∈ PL ∪ PI , must be no more

than Ck , which will be chosen later.

With the definition of μ in (2.9), we define �F as the grand-canonical Gibbs state in this
revised ‘Bose’ statistics with the chemical potential μ(�̃,β) ≤ 0 and temperature T = β−1,
where

�̃ ≡ �(1 − L−1/2) = �(1 − o(�1/3)) (12.15)

and Ck is chosen as follows (Recall mc = �−3η)

Ck =
{

(mc)
1/3

βEk,μ
k ∈ PI

mc k ∈ PL,
(12.16)

where Ek,μ is defined as k2 − μ(�̃,β). We note that β = O(�−2/3) implies,

βEk,μCk ≥ O(�−η).

With these notations, we can write �F as

�F = C
∑

α∈BF

fα|α〉〈α| (12.17)

where C is a constant and fα is non-zero only when α(k) is supported on PI ∪ PL and

α(k) ≤ Ck, k ∈ PI ∪ PL. (12.18)

If fα is non-zero,

fα ≡ exp

(
−

∑
k

(
k2 − μ(�̃,β)

)
βα(k)

)
= exp

(
−

∑
k

Ek,μβα(k)

)
(12.19)

We claim that the state �F in Fock space has the following properties:
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Lemma 20 The free energy per volume of �F is bounded above by

f (�F ) ≤ f0(�,β)(1 − o(�1/3)) (12.20)

In most cases, the total particle number of �F is less than N = �	, i.e.,

N∑
m=1

TrHm �m
F ≥ 1 − � (12.21)

Here �m
F is the component of �F on Hm, i.e.,

�F =
∞∑

m=0

⊕�m
F , �m

F : Hm → Hm (12.22)

Similarly, in most cases, the total particle number of �F is very close to min{�,�c}	, i.e.,
we have ∑

|m−min{�,�c}	|≤N�1/3

TrHm �m
F ≥ 1 − � (12.23)

Proof of Lemma 20 First, we prove (12.20), by the definition, the free energy of �F is

−1

β

[ ∑
k∈PL∪PI

log

(
eβEk,μ − e−βEk,μCk

eβEk,μ − 1

)]

+
∑

k∈PL∪PI

μ(�̃, β)

(
1

eβEk,μ − 1
−

∑
k∈PL∪PI

1 + Ck

eβEk,μ(Ck+1) − 1

)
. (12.24)

With the definition of PI and PL, adding the k /∈ PI ∪ PL terms and bounding the Ck terms,
one can easily check that (12.24) is equal to

(−1

β

∑
k∈( 2πZ

L
)3,k �=0

log

(
eβEk,μ

eβEk,μ − 1

)
+

∑
k∈( 2πZ

L
)3,k �=0

μ(�̃,β)
1

eβEk,μ − 1

)
(1 + o(�1/3)).

(12.25)
Then with the choice L = �−41/60 and the definition of free energy f0 in (2.7) and (2.8),

we have

(12.25) = f0(�̃, β)	(1 + o(�1/3)) (12.26)

Combining this with �̃ = �(1 + o(�1/3)), we obtain the desired result (12.20).
Then we prove (12.21). Let n(k) denote the number of the particles in one-particle-

state |k〉. Then n(k) the average of n(k) is equal to Tra†
kak�F . By the definition, the average

total number of particles of �F is equal to

∑
k∈PI ∪PL

n(k) =
∑

k∈PI ∪PL

1

eβEk,μ − 1
−

∑
k∈PL∪PI

1 + Ck

eβEk,μ(Ck+1) − 1
(12.27)

Similarly, with L = �−41/60 and βEk,μCk � | log�|, one can easily prove:

(12.27) = min{�̃, �c(β)}	(1 + O(�−1/3L−1 log�))

= min{�̃, �c}	 + o(N�41/120) (12.28)
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On the other hand, we are going to use Hoeffding’s inequality to estimate
∑

k n(k). Hoeffd-
ing’s inequality said, for independent Xi ’s, if they are bounded as

ai ≤ Xi − E(Xi) ≤ bi (12.29)

where E(Xi) is the expected value of Xi , then

P

(∣∣∣∣
∑

i

Xi − E

(∑
i

Xi

)∣∣∣∣ > t

)
≤ 2 exp

(
− 2t2∑

i (bi − ai)2

)
(12.30)

Since n(k)’s are independent random variables for different k’s and they are bounded in
(12.16), we can use Hoeffding’s inequality [5] to estimate the distribution of the total particle
number of �F . With n(k) ≤ Ck and Hoeffding’s inequality [5], we obtain that the probability
of finding more than N particles in �F is bounded above by

P

(∑
k

n(k) > N

)
≤ 2 exp

{
−2[N − ∑

k n(k)]2∑
k∈PI ∪PL

C2
k

}
(12.31)

By the definition of Ck (12.16), the denominator of the r.h.s. of (12.31) is bounded as:

∑
k∈PI ∪PL

C2
k = O(�4/3	Lm2/3

c ) (12.32)

On the other hand, with the fact � − �̃ = �L−1/2 and (12.28), the numerator of the r.h.s. of
(12.31) is bounded below by

[
N −

∑
k

n(k)

]2

≥ O(�2L5) (12.33)

Inserting L = �−41/60, (12.32) and (12.33) into (12.31), we obtain the desired result (12.21).
And (12.23) can proved similarly with (12.28) and (12.32). �

By Lemma 20, there exists m0 ≤ N such that

m0 ≤ N, |m0 − min{�,�c}	| ≤ �1/3N (12.34)

and the free energy of �
m0

F is less than f0(�,β)	(1 − o(�1/3)).
Then adding N −m0 (N = �	) particles with momentum zero into the system described

by �
m0

F , we obtain a new state �0 of N particles. The state �0 always has N − m0 particles
with momentum zero. The free energy of �0 is also less than f0(�,β)	(1 − o(�1/3)), i.e.,

∣∣∣∣Tr(−��0) + 1

β
S(�0) − f0(�,β)

∣∣∣∣	−1 ≤ o(�2) (12.35)

Furthermore, by the definition of �F , �0 has the form:

�0 =
∑
α∈M

gα(�,β)|α〉〈α|, α(0) = N − m0 and
∑
α∈M

gα = 1 (12.36)
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We note: if α(k) > Ck for some k ∈ PI ∪ PL, then gα(�,β) = 0. This property implies that
the total number of the particles with momentum in PI is o(N). So we have

∑
α∈M

∑
k∈PI

gα(�,β)α(k) � N. (12.37)

Together with the facts α(0) = N −m0, (12.34) and α(k) ≤ mc for α ∈ PL, we obtain (3.24).
At last we prove (3.23). First with the structure of �0, we have

TrHN,	

1

2
V �0 =

∑
α∈M

gα(�,β)〈α|1

2
V |α〉

=
∑
α∈M

gα(�,β)

( ∑
k∈P0∪PI ∪PL

1

2
V0	

−1(α(k)2 − α(k))

+
k �=k′∑

k,k′∈P0∪PI ∪PL

(V0 + Vk−k′)	−1α(k)α(k′)
)

(12.38)

Using the smoothness of V and |k|, |k′| � 1, we can replace Vk−k′ with V0 without changing
the leading term. Then with the cutoff Ck’s, the fact α(0) = N − m and (12.34), we have

lim
�→0

∣∣∣∣Tr
1

2
V �0

∣∣∣∣�−2	−1 = 1

2
V0(2 − [1 − R[β]]2

+) (12.39)

Combine with (12.35), we obtain (3.23).

12.3 Proof of Lemma 3

Proof Since the states |α〉’s ∈ M are orthonormal, we can rewrite the entropy of �0 in
Lemma 2 as

S(�0) = −
∑
α∈M

gα loggα (12.40)

For S(�), we define A∞ as

A∞ ≡
∥∥∥∥
∑
α∈M

|�α〉〈�α|
∥∥∥∥

∞

and rewrite � as

� = A∞
∑
α∈M

gα

|�α〉√
A∞

〈�α|√
A∞

(12.41)

With the fact Tr� = 1, i.e.,
∑

gα = 1, we have

S(�) = − logA∞ − A∞ Tr

[∑
α∈M

gα

|�α〉√
A∞

〈�α|√
A∞

log

(∑
α∈M

gα

|�α〉√
A∞

〈�α|√
A∞

)]
(12.42)

With the concavity of the logarithm, one can easily obtain

S(�) ≥ − logA∞ −
∑
α∈M

gα loggα = − logA∞ + S(�0) (12.43)
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We claim the following lemma

Lemma 21

lim
�→0

(
log

∥∥∥∥
∑
α∈M

|�α〉〈�α|
∥∥∥∥∞

)
1

N�1/3
= 0 (12.44)

Insert this lemma into (12.43), we arrive at the desired result (3.31). �

12.3.1 Proof of Lemma 21

Proof With the fact: for any hermitian matrix M = Mij ,

‖M‖∞ ≤ max
i

{∑
j

|Mij |
}

we can bound ‖∑
α∈M |�α〉〈�α|‖∞ as follows (recall M̃ in Definition 2)

∥∥∥∥
∑
α∈M

|�α〉〈�α|
∥∥∥∥

∞
≤ max

β∈M̃

{∑
α∈M

∑
γ∈M̃

|〈β|�α〉〈�α|γ 〉|
}

≤ max
β∈M̃

{∑
α∈M

|〈β|�α〉|
}

· max
α∈M

{∑
γ∈M̃

|〈γ |�α〉|
}
, (12.45)

With the fact �α is the linear combination of states in Mα ⊂ M̃α and |β〉, |�α〉 are normal-
ized, we claim

log

(
max
β∈M̃

{∑
α∈M

|〈β|�α〉|
})

≤ �1−4η−3κL (12.46)

log

(
max
α∈M

{∑
γ∈M̃

|〈γ |�α〉|
})

≤ �1−4η−3κL + �−4η−3κH (12.47)

First, we prove (12.46). For any α ∈ M and β ∈ M̃α , |〈β|�α〉| �= 0 implies |〈β|�α〉| ≤ 1.
Then with the definition of M and M̃α , if α ∈ M , β ∈ M̃α , we have

β(u) = α(u) for u ∈ PI

β(u) ≤ α(u) for u ∈ PL

α(u) = 0 for u ∈ PH

(12.48)

and for any fixed small box Bi
L(i = 1,2, . . .) in PL, β(u) is very close to α(u), i.e.,

∑
u∈Bi

L

|β(u) − α(u)| ≤ 1 (12.49)

Now let’s count, for fixed β , how many α ∈ M satisfy β ∈ M̃α . This number must be less
than the α’s satisfying (12.48) and (12.49). By the definition of BL’s, the total number of
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BL’s is less than const. �1−3η−3κL . And for any Bi
L, |Bi

L| the number of the elements in Bi
L

is less than const.�3κL	. Therefore, for fix β ∈ M̃ , the total number of α ∈ M satisfying
β ∈ M̃α is less than

(
const. �3κL	

)const. �1−3η−3κL

(12.50)

Together with the fact |〈β|�α〉| ≤ 1, we proved (12.46).
Then we prove (12.47). Similarly, using the rule 2 of Definition 3, we can count, for fix

α ∈ M , the total number of γ ∈ M̃ , s.t. |〈γ |�α〉| �= 0 is less than

(
const. �3κL	

)const. �1−3η−3κL (
const. �3κH 	

)const. �−3η−3κH

(12.51)

which implies (12.47). Inserting (12.46) and (12.47) into (12.45), we obtain the desired
result (12.44). �

Appendix

Lemma 22 For any bound, non-negative, piecewise continuous function, spherically sym-
metric f supported in unit ball, there exist C∞, non-negative spherically symmetric function
f1, f2, . . . supported in the ball of radius 2 such that for any n ≥ 1,

fn − f ≥ 0 and lim
n→∞‖fn − f ‖1 = 0 (13.1)

Proof First, we note, for any bound, non-negative, piecewise continuous function f sup-
ported in unit ball, there exist non-negative, continuous functions f̃1, f̃2, . . . supported in
the ball of radius 1.5, such that

f̃n ≥ f and lim
n→∞‖f̃n − f ‖1 → 0 (13.2)

Then we claim that for any f̃n, there exist C∞, non-negative spherically symmetric function
f̃nm (m = 1,2, . . .) supported in the ball of radius 2, such that

f̃nm ≥ f̃n and lim
n→∞‖f̃n − f̃nm‖1 → 0 (13.3)

To prove Lemma 22, we can choose fn as f̃nmn , where mn is defined as

mn = min
{
m : ‖f̃n − f̃nm‖1 ≤ ‖f̃n − f ‖1

}
(13.4)

It only remains to prove (13.3). Let g be a bound C∞ spherically symmetric function support
in the ball of radius 2 such that

g ≥ 0, ‖g‖1 = 1 and g(x) = g(0) > 0 for |x| ≤ 1.5 (13.5)

And we define gm as

gm(x) = m3g(mx) (13.6)

Then ‖gm‖1 = 1. Furthermore, for fixed n

lim
m→∞ ‖f̃n ∗ gm − f̃n‖∞ = 0 and lim

m→∞ ‖f̃n ∗ gm − f̃n‖1 = 0 (13.7)
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and f̃n ∗ gm are non-negative, C∞ spherically symmetric functions. Since f̃n is supported
on the ball of radius 1.5, we can choose f̃nm as

f̃nm ≡ f̃n ∗ gm + 1

g(0)
‖f̃n ∗ gm − f̃n‖∞g (13.8)

and complete the proof. �
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